Effects of Heavy Fuel Oil Blend with Ethanol, n-Butanol or Methanol Bioalcohols on the Spray Characteristics

Publish Year: 1395
نوع سند: مقاله ژورنالی
زبان: English
View: 176

This Paper With 13 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JAFM-9-5_031

تاریخ نمایه سازی: 3 بهمن 1400

Abstract:

Blending of fossil fuels with alcohols is one of the most impressive strategies for emission control and enhancement of fuel efficiency. Accordingly, in the current paper, the effects of blend of Heavy Fuel Oil (HFO) with bioalcohols are numerically studied on the non-reacting spray characteristics. Three different fuels are considered by mixture of HFO with ۲۰% of n-Butanol, Ethanol, and Methanol and compared against Pure HFO. For this purpose, the microscopic and macroscopic spray characteristics of the blended fuels are evaluated through the investigation of spray penetration, cone angle, spray volume, and Sauter Mean Diameter (SMD). Moreover, for detailed understanding of the spray characteristics, the non-dimensional numbers of Weber and Ohnesorge, and liquid spray morphology are analyzed. Also, the study of Histogram of density and droplet diameter is conducted. Eulerian-Lagrangian multiphase scheme is used for simulation of air-fuel interaction in OpenFOAM CFD toolbox. Lagrangian Particle Tracking method is utilized for fuel droplet tracking in Lagrangian scheme. A hybrid breakup model of KH-RT and standard model of k-ε in RANS is used respectively for breakup and turbulence modeling. The obtained numerical results are validated against existing experimental data with suitable accordance. Based on the computational results, longer spray penetration length, larger spray cone angle and greater spray volume are achieved for the blended fuels. It was also concluded that HFO-Ethanol improves the macroscopic characteristics compared to two other blended fuels, albeit the effect is very minimal. In addition, lower SMD value is obtained for the blended fuels compared to pure HFO.

Authors

P. Ghadimi

Department of Marine Technology, Amirkabir University of Technology, Tehran, Tehran ۱۴۷۱۷, Iran

H. Nowruzi

Department of Marine Technology, Amirkabir University of Technology, Tehran, Tehran ۱۴۷۱۷, Iran