Influence of Heat Input, Working Fluid and Evacuation Level on the Performance of Pulsating Heat Pipe

Publish Year: 1391
نوع سند: مقاله ژورنالی
زبان: English
View: 169

This Paper With 10 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JAFM-5-2_005

تاریخ نمایه سازی: 5 بهمن 1400

Abstract:

An experimental study on pulsating heat pipe (PHP) is presented in this work. A closed loop PHP with a single U turn is fabricated and tested. The transient and steady state experiments are conducted and operating temperatures are measured. The experiments are carried out for different working fluids, heat input and for different evacuation levels. The derived parameters include thermal resistance and heat transfer coefficient of PHP. The results of these experiments show an intermittent motion of the working fluid at lower heat input. The temperature difference between evaporator and condenser at steady state is found lower for acetone compared to water, ethanol and methanol. Lower value of thermal resistance and higher value of heat transfer coefficient are observed in case of acetone compared to water, ethanol and methanol. Lower values of temperature difference between evaporator and condenser and thermal resistance and higher value of heat transfer coefficient are observed at atmospheric conditions of operation of PHP compared to evacuation conditions. The Power Spectral Density Analysis is also carried out on the results of these experiments using FFT technique to analyse the pulsating motion of the fluid in a PHP. In the Power Spectral Density analysis, the frequency distribution of temperature variation in PHP was observed over a wider range, signifying the periodic motion in the fluid flow of the liquid slug and vapour plug. This characteristic frequency corresponded to the characteristic time for a couple of adjacent vapour plug and liquid slug passing through a specific local wall surface in a PHP.

Authors

K. Rama Narasimha

Centre for Emerging Technologies, Jain University, Bangalore, Karnataka, ۵۶۲۱۱۲, India

S. N. Sridhara

K.S. School of Engineering and Management, Bangalore, Karnataka, ۵۶۰۰۶۲, India

M. S. Rajagopal

Global Academy of Technology, Bangalore, Karnataka, ۵۶۰۰۹۸, India

K. N. Seetharamu

P.E.S. Institute of Technology, Bangalore, Karnataka, ۵۶۰۰۸۵, India