سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

A new property of congruence lattices of slim, planar, semimodular lattices

Publish Year: 1401
Type: Journal paper
Language: English
View: 183

This Paper With 8 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_CGASAT-16-1_001

Index date: 30 January 2022

A new property of congruence lattices of slim, planar, semimodular lattices abstract

The systematic study of planar semimodular lattices started in2007 with a series of papers by G. Grätzer and E. Knapp. These lattices haveconnections with group theory and geometry. A planar semimodular latticeL is slim if M3 it is not a sublattice of L. In his 2016 monograph, “TheCongruences of a Finite Lattice, A Proof-by-Picture Approach”, the secondauthor asked for a characterization of congruence lattices of slim, planar,semimodular lattices. In addition to distributivity, both authors have previouslyfound specific properties of these congruence lattices. In this paper,we present a new property, the Three-pendant Three-crown Property. Theproof is based on the first author’s papers: 2014 (multifork extensions), 2017(C1-diagrams), and a recent paper (lamps), introducing the tools we need.

A new property of congruence lattices of slim, planar, semimodular lattices Keywords:

A new property of congruence lattices of slim, planar, semimodular lattices authors

Gábor Cz´edli

Bolyai Institute, University of Szeged, Szeged, Aradi H۶۷۲۰ Hungary

George Gr¨atzer

University of Manitoba, Canada

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
Adaricheva, K. and Czédli, G., Note on the description of ...
Czédli, G., Patch extensions and trajectory colorings of slim rectangular ...
Czédli, G., A note on congruence lattices of slim semimodular ...
Czédli, G., Finite convex geometries of circles, Discrete Math. ۳۳۰ ...
Czédli, G., Diagrams and rectangular extensions of planar semimodular lattices, ...
Czédli, G., Circles and crossing planar compact convex sets, Acta ...
Czédli, G., Lamps in slim rectangular planar semimodular lattices, DOI ...
Czédli, G., Non-finite axiomatizability of some finite structures, http://arxiv.org/abs/۲۱۰۲.۰۰۵۲۶ ...
Czédli, G., Revisiting Faigle geometries from a perspective of semimodular ...
Czédli, G. and Kurusa, ´A., A convex combinatorial property of ...
Czédli, G. and Makay, G., Swing lattice game and a ...
Czédli, G. and Schmidt, E. T., The Jordan-Hölder theorem with ...
Czédli, G. and Schmidt, E. T., Slim semimodular lattices. II. ...
Grätzer, G., Planar Semimodular Lattices: Congruences, Chapter ۴ in [۲۹] ...
Grätzer, G., Congruences in slim, planar, semimodular lattices: The Swing ...
Grätzer, G., On a result of Gábor Czédli concerning congruence ...
Grätzer, G., “The Congruences of a Finite Lattice. A Proof-by-Picture ...
Grätzer, G., Notes on planar semimodular lattices. VIII. Congruence lattices ...
Grätzer, G. and Knapp, E., Notes on planar semimodular lattices. ...
Grätzer, G. and Knapp, E., A note on planar semimodular ...
Grätzer, G. and Knapp, E., Notes on planar semimodular lattices. ...
Grätzer, G. and Knapp, E., Notes on planar semimodular lattices. ...
Grätzer, G. and Knapp, E., Notes on planar semimodular lattices. ...
Grätzer, G., Lakser, H., and Schmidt, E. T., Congruence lattices ...
Grätzer, G. and Nation, J. B., A new look at ...
Grätzer, G. and Schmidt, E. T., A short proof of ...
G. Grätzer and F. Wehrung, eds., “Lattice Theory: Special Topics ...
Kelly, D. and Rival, I., Planar lattices, Canad. J. Math. ...
نمایش کامل مراجع