The Effect of VAT e-Service Quality on Taxpayers’ Satisfaction in Iran
Publish Year: 1396
Type: Journal paper
Language: English
View: 199
This Paper With 21 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
JR_JITM-9-1_005
Index date: 15 February 2022
The Effect of VAT e-Service Quality on Taxpayers’ Satisfaction in Iran abstract
The design of e-government websites with improper service quality is one of the common problems in the contemporary era. Users’ perceptions of e-service quality are affected by their perceived service content and delivery quality. In this study, based on the model of e-government service quality, first we identify the factors of service content and delivery related to Value Added Tax (VAT) system in Iran. Then, we develop a conceptual model that depicts the influence of these factors on service quality and users’ satisfaction. Data gathering is performed through electronic questionnaire and the case study of taxpayers using VAT services. The results show that transactional performance and accessibility respectively, have the greatest impact on quality of service content and delivery. In addition, the users’ positive perceptions of service content and delivery quality influence their positive perceptions of overall service quality. This study offers the design of a user-centric governmental website with effective service quality to improve users’ satisfaction and also to encourage the adoption and continuance use of these services.
The Effect of VAT e-Service Quality on Taxpayers’ Satisfaction in Iran Keywords:
The Effect of VAT e-Service Quality on Taxpayers’ Satisfaction in Iran authors
مریم علی پور
Ph.D. Candidate in IT, Faculty of Management & Accounting, Allameh Tabataba’i University, Tehran, Iran
پیام حنفی زاده
Associate Prof. of Industrial Management, Faculty of Management & Accounting, Allameh Tabataba’i University, Tehran, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :