Size Effect on the Axisymmetric Vibrational Response of ‎Functionally Graded Circular Nano-Plate Based on the Nonlocal Stress-Driven Method

Publish Year: 1401
نوع سند: مقاله ژورنالی
زبان: English
View: 280

This Paper With 19 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JACM-8-3_015

تاریخ نمایه سازی: 18 اسفند 1400

Abstract:

In this work, the axisymmetric-vibrational behavior of a size-dependent circular nano-plate with functionally graded material with different types of boundary conditions was investigated. The analysis was performed based on the Stress-driven model (SDM) and Strain-gradient theory (SGT) in conjunction with classical plate theory. The governing equations of motion and their corresponding equations for boundary conditions were obtained based on Hamilton’s principle and solved using the generalized differential quadrature rule. Results show that this method is applicable to the vibrational analysis of such structures with a fast convergence rate; as N approaches ۶ for the first mode, and ۱۰ for the second as well as the third and fourth modes, regardless of the type of boundary condition. In both models, the influences of various parameters such as size-effect parameter Lc, material heterogeneity index n, and types of boundary conditions were obtained on the first four modes and compared with each other. Results indicate that the natural frequencies in these modes increase with an increase in the heterogeneity index n, and size-effect parameter Lc. Additionally, these parameters appear to have a stiffening effect on the nano-plate vibrational behavior. However, for a nano-plate resting on a knife or simply supported edge, in the first mode, the SDM shows a more stiffening effect on the plate behavior as compared with the SGT. Nonetheless, for the clamped and free edge boundary conditions, both models predicted the same behavior. The SGT showed a higher-stiffening effect only in the fourth mode, for all types of considered boundary conditions.

Authors

Mojtaba Shariati

Department of Mechanical Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran‎

Mohammad Shishesaz

Department of Mechanical Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran‎

Reza Mosalmani

Department of Mechanical Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran‎

S. Alireza S. Roknizadeh

Department of Mechanical Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran‎

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :