Stock Price Index Prediction Using Adaptive Neural Fuzzy Inference System
Publish place: International Journal of Management, Accounting and Economics (IJMAE)، Vol: 8، Issue: 10
Publish Year: 1400
Type: Journal paper
Language: English
View: 172
This Paper With 18 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
Export:
Document National Code:
JR_IJMAE-8-10_001
Index date: 12 March 2022
Stock Price Index Prediction Using Adaptive Neural Fuzzy Inference System abstract
This paper aims to predict stock prices using open, high, low, close variables using artificial neural networks, especially the adaptive fuzzy neural inference system (ANFIS). Each stock has a different pattern and can be predicted if you have complete data. This study is limited by stock data for 2012-2019. The survey was conducted to collect stock data from the Yahoo Finance website. The stock data used is data from 2001-2018. Learning patterns of data patterns using the Adaptive Neural Fuzzy Inference System (ANFIS) were compared with regression analysis, Mean Square Error (MSE) and Mean Prediction Error. The results show that stock price predictions using the Adaptive Neural Fuzzy Inference System (ANFIS) have a small error rate (below 1 percent). The stock price at closing is determined by the open price and the volume of the stock. The value of the highest price of the stock and the lowest value of the stock follows the determined value of the opening price. This paper contributes to existing research in economics, especially stock investment and Financial Technology.
Stock Price Index Prediction Using Adaptive Neural Fuzzy Inference System Keywords:
Prediction of Stock Price Index , Adaptive Neural Fuzzy Inference System (ANFIS) , Artificial Neural Network , Financial Technology
Stock Price Index Prediction Using Adaptive Neural Fuzzy Inference System authors
Rina Nopianti
Accounting Department, Business and Economic Faculty, Bina Bangsa University, Serang, Indonesia
Andreas Panudju
Industrial Engineering Departmenet, Bina Bangsa University, Serang, Indonesia
Angrian Permana
Management Department, Bina Bangsa University, Serang, Indonesia
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :