Publisher of Iranian Journals and Conference Proceedings

Please waite ..
Publisher of Iranian Journals and Conference Proceedings
Login |Register |Help |عضویت کتابخانه ها
Paper
Title

Comprehensive competitive endogenous RNA network analysis reveals EZH۲-related axes and prognostic biomarkers in hepatocellular carcinoma

مجله علوم پایه پزشکی ایران، دوره: 25، شماره: 3
Year: 1401
COI: JR_IJBMS-25-3_003
Language: EnglishView: 28
This Paper With 9 Page And PDF Format Ready To Download

Buy and Download

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این Paper را که دارای 9 صفحه است به صورت فایل PDF در اختیار داشته باشید.
آدرس ایمیل خود را در کادر زیر وارد نمایید:

Authors

Mohammad Donyavi - Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
Sadra Salehi-Mazandarani - Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
Parvaneh Nikpour - Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran

Abstract:

Objective(s): Hepatocellular carcinoma (HCC) is a common and lethal type of cancer worldwide. The importance of non-coding RNAs such as long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and microRNAs (miRNAs) have been recognized in the development of HCC. In this study, we constructed a four-component competing endogenous RNA (ceRNA) network in HCC and evaluated prognostic values of the ceRNAs. Materials and Methods: The expression profiles of lncRNAs, miRNAs, and mRNAs were retrieved from The Cancer Genome Atlas database. GSE۹۴۵۰۸ and GSE۹۷۳۳۲ studies from the Gene Expression Omnibus database were used to identify circRNAs expression profiles. A four-component ceRNA network was constructed based on differentially-expressed RNAs. Survival R package was utilized to identify potential prognostic biomarkers.Results: A four-component ceRNA network including ۲۹۵ edges and ۲۳۹ nodes was constructed and enrichment analysis revealed important Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways. A Protein-Protein Interaction network with ۱۱۸ nodes and ۳۰۱ edges was also established. The enhancer of zeste homolog ۲ (EZH۲) was the highest degree hub gene in the PPI network. Because of the significance of EZH۲ in HCC, we presented its axes in the ceRNA network, which play important roles in HCC progression. Furthermore, ceRNAs were identified as potential prognostic biomarkers utilizing survival analysis.Conclusion: Our study elucidates the role of ceRNAs and their regulatory interactions in the pathogenesis of HCC and identifies EZH۲-related RNAs which may be utilized as novel therapeutic targets and prognostic biomarkers in the future.

Keywords:

Paper COI Code

This Paper COI Code is JR_IJBMS-25-3_003. Also You can use the following address to link to this article. This link is permanent and is used as an article registration confirmation in the Civilica reference:

https://civilica.com/doc/1422344/

How to Cite to This Paper:

If you want to refer to this Paper in your research work, you can simply use the following phrase in the resources section:
Donyavi, Mohammad and Salehi-Mazandarani, Sadra and Nikpour, Parvaneh,1401,Comprehensive competitive endogenous RNA network analysis reveals EZH۲-related axes and prognostic biomarkers in hepatocellular carcinoma,https://civilica.com/doc/1422344

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :

  • Ferrante ND, Pillai A, Singal AG. Update on the diagnosis ...
  • Ko KL, Mak LY, Cheung KS, Yuen MF. Hepatocellular carcinoma: ...
  • Yang JD, Hainaut P, Gores GJ, Amadou A, Plymoth A, ...
  • Alqahtani A, Khan Z, Alloghbi A, Said Ahmed TS, Ashraf ...
  • Ogunwobi OO, Harricharran T, Huaman J, Galuza A, Odumuwagun O, ...
  • Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. ...
  • Wang Y, Hou J, He D, Sun M, Zhang P, ...
  • Fu L, Jiang Z, Li T, Hu Y, Guo J. ...
  • Mai H, Zhou B, Liu L, Yang F, Conran C, ...
  • Xiong Dd, Dang Yw, Lin P, Wen Dy, He Rq, ...
  • Luo Y, Li H, Huang H, Xue L, Li H, ...
  • Yan Y, Yu J, Liu H, Guo S, Zhang Y, ...
  • Edgar R, Domrachev M, Lash AE. Gene expression omnibus: NCBI ...
  • Weinstein JN, Collisson EA, Mills GB, Shaw KRM, Ozenberger BA, ...
  • Colaprico A, Silva TC, Olsen C, Garofano L, Cava C, ...
  • Lauss M, Visne I, Kriegner A, Ringnér M, Jönsson G, ...
  • Leek JT, Scharpf RB, Bravo HC, Simcha D, Langmead B, ...
  • Zhang Y, Parmigiani G, Johnson WE. ComBat-seq: batch effect adjustment ...
  • Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. ...
  • Love MI, Huber W, Anders S. Moderated estimation of fold ...
  • Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, ...
  • Durinck S, Spellman PT, Birney E, Huber W. Mapping identifiers ...
  • Ru Y, Kechris KJ, Tabakoff B, Hoffman P, Radcliffe RA, ...
  • Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective ...
  • Wong N, Wang X. MiRDB: an online resource for microRNA ...
  • Chou CH, Shrestha S, Yang CD, Chang NW, Lin YL, ...
  • Lin Y, Liu T, Cui T, Wang Z, Zhang Y, ...
  • Dudekula DB, Panda AC, Grammatikakis I, De S, Abdelmohsen K, ...
  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, ...
  • Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, ...
  • Xie C, Mao X, Huang J, Ding Y, Wu J, ...
  • Walter W, Sánchez-Cabo F, Ricote M. GOplot: an R package ...
  • Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, ...
  • Heagerty PJ, Lumley T, Pepe MS. Time-dependent ROC curves for ...
  • Au SL, Wong CC, Lee JM, Fan DN, Tsang FH, ...
  • Sudo T, Utsunomiya T, Mimori K, Nagahara H, Ogawa K, ...
  • Cao MQ, You AB, Zhu XD, Zhang W, Zhang YY, ...
  • Shi M, Li ZY, Zhang LM, Wu XY, Xiang SH, ...
  • Duan R, Du W, Guo W. EZH۲: a novel target ...
  • Kim KH, Roberts CWM. Targeting EZH۲ in cancer. Nat Med ...
  • Gan L, Xu M, Hua R, Tan C, Zhang J, ...
  • Pellecchia S, Sepe R, Decaussin-Petrucci M, Ivan C, Shimizu M, ...
  • Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, ...
  • Yamagishi M, Uchimaru K. Targeting EZH۲ in cancer therapy. Curr ...
  • Xiao G, Jin LL, Liu CQ, Wang YC, Meng YM, ...
  • Xu L, Beckebaum S, Iacob S, Wu G, Kaiser GM, ...
  • Liao X, Wang X, Huang K, Han C, Deng J, ...
  • Nomura K, Kitanaka A, Iwama H, Tani J, Nomura T, ...
  • Zhou S, Zhu C, Pang Q, Liu HC. MicroRNA-۲۱۷: A ...
  • Gan L, Yang Y, Li Q, Feng Y, Liu T, ...
  • Zhai R, Tang F, Gong J, Zhang J, Lei B, ...
  • Zhang K, Fang T, Shao Y, Wu Y. TGF-β-MTA۱-SMAD۷-SMAD۳-SOX۴-EZH۲ signaling ...
  • Guo B, Tan X, Cen H. EZH۲ is a negative ...
  • Xu L, Lin J, Deng W, Luo W, Huang Y, ...

Research Info Management

Certificate | Report | من نویسنده این مقاله هستم

اطلاعات استنادی این Paper را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

Scientometrics

The specifications of the publisher center of this Paper are as follows:
Type of center: دانشگاه دولتی
Paper count: 20,208
In the scientometrics section of CIVILICA, you can see the scientific ranking of the Iranian academic and research centers based on the statistics of indexed articles.

Share this page

More information about COI

COI stands for "CIVILICA Object Identifier". COI is the unique code assigned to articles of Iranian conferences and journals when indexing on the CIVILICA citation database.

The COI is the national code of documents indexed in CIVILICA and is a unique and permanent code. it can always be cited and tracked and assumed as registration confirmation ID.

Support