Asymptotic and numerical methods for solving singularly perturbed differential difference equations with mixed shifts

Publish Year: 1401
نوع سند: مقاله ژورنالی
زبان: English
View: 111

This Paper With 18 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_IJNAO-12-1_003

تاریخ نمایه سازی: 21 فروردین 1401

Abstract:

This article deals with an effcient approximation method named successive complementary expansion method (SCEM) for solving singularly perturbed differential-difference equations with mixed shifts. It is compared with the method of matched asymptotic expansion (MMAE) and the parameter uniform upwind finite difference scheme for solving such a model. The comparison shows, unlike the MMAE, the SCEM method requires no matching procedure. It requires less computation when compared to the upwind finite difference scheme on the Shishkin mesh. The error analysis is carried out to prove the robustness of the method. Some numerical experiments are provided, which show the effectiveness of the proposed method.

Authors

S. Priyadarshana

Department of Mathematics, National Institute of Technology Rourkela-۷۶۹۰۰۸, Odisha, India.

S.R. Sahu

Department of Mathematics, The ICFAI University Tripura-۷۹۹۲۱۰, Tripura, India

J. Mohapatra

Department of Mathematics, National Institute of Technology Rourkela-۷۶۹۰۰۸, Odisha, India.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Amiraliyev, G.M., Amiraliyeva, I.G. and Kudu, M. A numerical treatment ...
  • Arora, G. and Kaur, M. Numerical simulation of singularly perturbed ...
  • Bush, A.W. Perturbation methods for engineers and scientists, CRC Press, ...
  • Cengizci, S., Natesan, S. and Atay, M.T. An asymptotic-numerical hybrid ...
  • Chakravarthy, P.P. and Gupta, T. Numerical solution of a weakly ...
  • Chakravarthy, P.P. and Kumar, K. A novel method for singularly ...
  • Cousteix, J. and Mauss, J. Asymptotic analysis and boundary layers, ...
  • Duressa, G.F. and Reddy, Y.N. Domain decomposition method for singularly ...
  • Kadalbajoo, M.K. and Sharma, K.K. Numerical analysis of singularly perturbed ...
  • Kadalbajoo, M.K. and Sharma, K.K. Numerical treatment of a mathematical ...
  • Kellogg, R.B. and Tsan, A. Analysis of some difference approximations ...
  • Kokotovic, P., Khali, H.K. and O’reilly, J. Singular perturbation methods ...
  • Kudu, M., Amirali, I. and Amiraliyev, G.M. A layer analysis ...
  • Kudu, M., Amirali, I. and Amiraliyev, G.M. Uniform numerical approximation ...
  • Lange, C.G. and Miura, R.M. Singular perturbation analysis of boundaryvalue ...
  • Mauss, J. and Cousteix, J. Uniformly valid approximation for singular ...
  • Melesse, W.G.,Tiruneh, A.A. and Derese, G.A. Solving linear secondorder singularly ...
  • Mohapatra, J. and Natesan, S. Uniformly convergent second order numerical ...
  • Mohapatra, J. and Natesan, S. Uniformly convergent numerical method for ...
  • Mohapatra, J. and Natesan, S. Parameter-uniform numerical methods for singularly ...
  • Mushahary, P., Sahu, S.R. and Mohapatra, J. A parameter uniform ...
  • Rao, R.N. and Chakravarthy, P.P. An exponentially fitted tridiagonal finite ...
  • Reddy, N.R. and Mohapatra, J. An effcient numerical method for ...
  • Saberi-Nadjafi, J. and Ghassabzade, F.A. The numerical solution of the ...
  • Sirisha, L., Phaneendra, K. and Reddy, Y.N. Mixed finite difference ...
  • Stein, R.B. Some models of neuronal variability, Biophys. J. ۷(۱), ...
  • نمایش کامل مراجع