سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Hierarchical Risk Parity as an Alternative to Conventional Methods of Portfolio Optimization: (A Study of Tehran Stock Exchange)

Publish Year: 1400
Type: Journal paper
Language: English
View: 221

This Paper With 24 Page And PDF Format Ready To Download

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

Export:

Link to this Paper:

Document National Code:

JR_IJFIFSA-5-4_001

Index date: 13 April 2022

Hierarchical Risk Parity as an Alternative to Conventional Methods of Portfolio Optimization: (A Study of Tehran Stock Exchange) abstract

One of the most critical investment issues faced by different investors is choosing an optimal investment portfolio and balancing risk and return in a way that, maximizes investment returns and minimize the investment risk. So far, many methods have been introduced to form a portfolio, the most famous of the Markowitz approach. The Markowitz mean-variance approach is widely known in the world of finance and, it marks the foundation of every portfolio theory. The mean-variance theory has many practical drawbacks due to the difficulty in estimating the expected return and covariance for different asset classes. In this study, we use the Hierarchical Risk Parity (HRP) machine learning technique and compare the results with the three methods of Minimum Variance (MVP), Uniform Distribution (UNIF), and Risk Parity (RP). To conduct this research, the adjusted price of 50 listed companies of the Tehran Stock Exchange for 2018-07-01 to 2020-09-29 has been used. 70% of the data are considered as in-sample and the remaining 30% as out-of-sample. We evaluate the results using four criteria: Sharp, Maximum Drawdown, Calmer, Sortino. The results show that the MVP and, UNIF approach within the in-sample and, the UNIF and HRP approach out-of-sample have the best performance in sharp measure.

Hierarchical Risk Parity as an Alternative to Conventional Methods of Portfolio Optimization: (A Study of Tehran Stock Exchange) Keywords:

Hierarchical Risk Parity as an Alternative to Conventional Methods of Portfolio Optimization: (A Study of Tehran Stock Exchange) authors

Marziyeh Nourahmadi

Ph.D. Candidate in Financial Engineering, Faculty of Economic, Management and Accounting, Yazd University, Yazd, Iran.

Hojjatollah Sadeqi

Assistant Prof., Department of Accounting and Finance, Faculty of Humanities and Social Sciences, Yazd University, Yazd, Iran.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
Al-Aradi, A., & Jaimungal, S. (۲۰۱۸). Outperformance and tracking: Dynamic ...
Barziy, I., & Chlebus, M. (۲۰۲۰). HRP performance comparison in ...
Bechis, L., Cerri, F., & Vulpiani, M. (۲۰۲۰). Machine Learning ...
Börner, K., Chen, C., & Boyack, K. W. (۲۰۰۳). Visualizing ...
Brinson, G. P., Hood, L. R., & Beebower, G. L. ...
Burggraf, T. (۲۰۲۰). Beyond Risk Parity–A Machine Learning-based Hierarchical Risk ...
Cochrane, J. H. (۱۹۹۹). Portfolio advice for a multifactor world. ...
Jaeger, M., Krügel, S., Papenbrock, J., & Schwendner, P. (۲۰۲۱). ...
Jain, P., & Jain, S. (۲۰۱۹). Can machine learning-based portfolios ...
Lohre, H., Rother, C., & Schäfer, K. A. (۲۰۲۰). Hierarchical ...
Molyboga, M. (۲۰۲۰). A Modified Hierarchical Risk Parity Framework for ...
Raffinot, T. (۲۰۱۸). The hierarchical equal risk contribution portfolio. Available ...
Sharpe, W. F. (۱۹۹۱). The arithmetic of active management. Financial ...
Simon, H. A. (۱۹۹۱). The architecture of complexity. In Facets ...
Snow, D. (۲۰۲۰). Machine Learning in Asset Management—Part ۲: Portfolio ...
نمایش کامل مراجع