Studying the effects of USING GARCH-EVT-COPULA METHOD TO ESTIMATE VALUE AT RISK OF PORTFOLIO
Publish place: Iranian Journal of Finance، Vol: 2، Issue: 1
Publish Year: 1397
Type: Journal paper
Language: English
View: 223
This Paper With 27 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
JR_IJFIFSA-2-1_004
Index date: 13 April 2022
Studying the effects of USING GARCH-EVT-COPULA METHOD TO ESTIMATE VALUE AT RISK OF PORTFOLIO abstract
Value at Risk (VaR) plays a central role in risk management. There are several approaches for the estimation of VaR, such as historical simulation, the variance-covariance and the Monte Carlo approaches. This work presents portfolio VaR using an approach combining Copula functions, Extreme Value Theory (EVT) and GARCH-GJR models. We investigate the interactions between Tehran Stock Exchange Price Index (TEPIX) and Composite NASDAQ Index. We first use an asymmetric GARCH model and an EVT method to model the marginal distributions of each log returns series and then use Copula functions (Gaussian, Student’s t, Clayton, Gumbel and Frank) to link the marginal distributions together into a multivariate distribution. The portfolio VaR is then estimated. To check the goodness of fit of the approach, Backtesting methods are used. The empirical results show that, compared with traditional methods, the copula model captures the value more successfully.
Studying the effects of USING GARCH-EVT-COPULA METHOD TO ESTIMATE VALUE AT RISK OF PORTFOLIO Keywords:
Studying the effects of USING GARCH-EVT-COPULA METHOD TO ESTIMATE VALUE AT RISK OF PORTFOLIO authors
Ghodratollah Emamverdi
Assistant Professor of Economics, Islamic Azad University, Central Tehran Branch, Tehran, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :