Publisher of Iranian Journals and Conference Proceedings

Please waite ..
Publisher of Iranian Journals and Conference Proceedings
Login |Register |Help |عضویت کتابخانه ها
Paper
Title

تشخیص گریه نوزاد از سایر صداهای محیط با استفاده از یادگیری عمیق

Year: 1400
COI: FJCFIS09_036
Language: PersianView: 162
This Paper With 6 Page And PDF Format Ready To Download

Buy and Download

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این Paper را که دارای 6 صفحه است به صورت فایل PDF در اختیار داشته باشید.
آدرس ایمیل خود را در کادر زیر وارد نمایید:

Authors

پری ناز نورمحمدی - قطب علم ی رایانش نرم و پردازش هوشمند اطلاعات ، گروه برق ، دانشگاه فردوسی، مشهد
مریم رحیمی هاشم آباد
مهسا زمانی تراشنده
محمدرضا اکبرزاده توتونچی

Abstract:

مهم ترین راه ارتباطی نوزادان با دنیای اطراف گریه آن ها است. علاوه بر درک نیازهای روزمره نوزادان، پیش بینی بیماری یکی دیگر از وظایف مهم در تحقیقات گریه نوزاد است. سیستم های هوشمند تشخیص گریه نوزاد زمینه ساز ساخت ربات های هوشمند مراقبتی خواهند بود. سیگنال های گریه نوزادان حاوی ویژگی های منحصر به فردی است که با استفاده از این ویژگی ها می توان گریه نوزادان را از سایر اصوات محیط تشخیص داد. اغلب دیتاهای موجود در این زمینه صداها ی ضبط شده توسط افراد در NICU و یا در خانه توسط والدین است. دراین پژوهش صدای گریه نوزادان از سایر اصوات محیط تشخیص داده شده است. دراین مسیر از ضرایب کپسترال فرکانس مل۱ (MFCC) بهره بردیم و عملکرد شبکه ها ی عصبی عمیق پیچشی ۲ (CNN) و حافظه طولانی- کوتاه مدت ۳ (LSTM) را بررسی کردیم و برتری روش خود را بر اساس معیارهای دقیق تر و جامع تری از جمله دقت۴ ، حساسیت۵ و ماتریس درهم ریختگی ۶ سنجیدیم. نتایج به دست آمده نشان می دهد که جهت تشخیص صدای گریه نوزادان الگوریتم شبکه عصبی حافظه طولانی- کوتاه مدت دارای دقت ۹۶/۳۰% و شبکه عصبی پیچشی دارای دقت ۹۷/۹۷% می باشد

Keywords:

تشخیص گریه نوزادان , ضرایب کپسترال فرکانس مل , شبکه عصبی طولانی- کوتاه مدت , شبکه عصبی پیچشی

Paper COI Code

This Paper COI Code is FJCFIS09_036. Also You can use the following address to link to this article. This link is permanent and is used as an article registration confirmation in the Civilica reference:

https://civilica.com/doc/1436435/

How to Cite to This Paper:

If you want to refer to this Paper in your research work, you can simply use the following phrase in the resources section:
نورمحمدی، پری ناز و رحیمی هاشم آباد، مریم و زمانی تراشنده، مهسا و اکبرزاده توتونچی، محمدرضا،1400،تشخیص گریه نوزاد از سایر صداهای محیط با استفاده از یادگیری عمیق،9th Iranian Joint Congress on Fuzzy and Intelligent Systems،Bam،https://civilica.com/doc/1436435

Research Info Management

Certificate | Report | من نویسنده این مقاله هستم

اطلاعات استنادی این Paper را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

Scientometrics

The specifications of the publisher center of this Paper are as follows:
Type of center: دانشگاه دولتی
Paper count: 33,880
In the scientometrics section of CIVILICA, you can see the scientific ranking of the Iranian academic and research centers based on the statistics of indexed articles.

New Papers

New Researchs

Share this page

More information about COI

COI stands for "CIVILICA Object Identifier". COI is the unique code assigned to articles of Iranian conferences and journals when indexing on the CIVILICA citation database.

The COI is the national code of documents indexed in CIVILICA and is a unique and permanent code. it can always be cited and tracked and assumed as registration confirmation ID.

Support