Support Vector Regression Parameters Optimization using Golden Sine Algorithm and Its Application in Stock Market

Publish Year: 1401
نوع سند: مقاله ژورنالی
زبان: English
View: 252

This Paper With 11 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_AMFA-7-2_014

تاریخ نمایه سازی: 21 اردیبهشت 1401

Abstract:

Stock price prediction is one of the most important concerns of stockholders. This prediction, independent of the method which is used or the assumptions which are applied, is welcomed and trusted if it can guarantee a high fitting. So due to the high performance prediction, using some complicated models as Machine Learning family such as Support Vector Regression (SVR) was recommended instead of older and lower performance approaches such as multiple discriminant technique. SVR model have achieved high performance on forecasting problems, however, its performance is highly dependent on the appropriate selection of SVR parameters. In this study, a novel GSA-SVR model based on Golden Sine Algorithm is presented. The performance of the proposed model is compared with eleven other meta-heuristic algorithms on some stocks from NASDAQ. The results indicate that the given model here is capable of optimizing the SVR parameters very well and indeed is one of the best models judged by both prediction performance accuracy and time consumption.

Authors

Mohammadreza Ghanbari

Department of Mathematical Sciences, Sharif University of Technology, Tehran, Iran

Mahdi Goldani

Department of Economics, Hakim Sabzevari university, Sabzevar ۹۶۱۷۹۷۶۴۸۷, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • References[۱] Abarbanel, H., Analysis of observed chaotic data, Springer Science ...
  • Chang, C.C., Lin, C., Libsvm J.,, A library for support ...
  • Cortes, C., Vapnik, V., Support-vector networks, Machine learning, ۱۹۹۵, ۲۰, ...
  • Diebold, F.X., Mariano, R.S.: Comparing predictive accuracy, Journal of Business ...
  • Huang, C.F., A hybrid stock selection model using genetic algorithms ...
  • Kennel, M.B., Brown, R., Abarbanel, H.D., Determining embedding dimension for ...
  • Doi: ۱۰.۱۱۰۳/PhysRevA.۴۵.۳۴۰۳[۱۳] Li, S., Fang, H., Liu, X., Parameter optimization ...
  • Doi: ۱۰.۲۲۰۳۴/amfa.۲۰۱۹.۵۷۹۵۱۰.۱۱۴۴[۱۸] Sai, L., and Huajing, F., WOA-based algorithm for ...
  • Vapnik, V., The nature of statistical learning theory, Springer science ...
  • Doi: ۱۰.۱۰۱۶/j.eswa.۲۰۰۸.۰۶.۰۴۶[۲۶] Yeh, C.Y., Huang, C.W., Lee, S.J., A multiple-kernel ...
  • نمایش کامل مراجع