Multi-Objective Optimization of Shot-Peening Parameters Using Modified Taguchi Technique
Publish place: Journal of Solid Mechanics، Vol: 14، Issue: 2
Publish Year: 1401
Type: Journal paper
Language: English
View: 237
This Paper With 16 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
JR_JSMA-14-2_002
Index date: 15 May 2022
Multi-Objective Optimization of Shot-Peening Parameters Using Modified Taguchi Technique abstract
Shot-peening is a surface treatments utilized extensively in the industry to enhance the performance of metal parts against fatigue. This paper aimed to find the optimal parameters of the shot-peening process based on the finite elements model and the Taguchi method. The effects of three peening parameters (shot diameter, shot velocity, coverage percentage) are investigated on residual stress and roughness using Taguchi method. A new Taguchi technique is proposed by combining it with desirability function to optimize the shot-peening parameters that simultaneously provide two or more responses in an optimal mode. The results show that the coverage percentage has the most influence on the surface stress and maximum compressive stress whereas the velocity and diameter of the shot are the most effective parameters on the depth of compression stress. The shot velocity is the main factor of the surface roughness due to the shot peening. Through the proposed structure, optimal conditions can be obtained for surface stress and roughness simultaneously with high-coverage and low-velocity. Eventually, results reveal the effectiveness of the proposed strategy in stand point of saving time and cost.
Multi-Objective Optimization of Shot-Peening Parameters Using Modified Taguchi Technique Keywords:
Multi-Objective Optimization of Shot-Peening Parameters Using Modified Taguchi Technique authors
M Hassanzadeh
Faculty of Mechanical and Energy Engineering, Shahid Beheshti University, Tehran, Iran
S. E Moussavi Torshizi
Faculty of Mechanical and Energy Engineering, Shahid Beheshti University, Tehran, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :