Power-efficient and high-speed design of approximate full adders using CNFET technology
Publish place: International Journal of Nano Dimension، Vol: 13، Issue: 2
Publish Year: 1401
نوع سند: مقاله ژورنالی
زبان: English
View: 199
This Paper With 18 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJND-13-2_004
تاریخ نمایه سازی: 9 خرداد 1401
Abstract:
Full adder cells are the major fundamental elements of larger arithmetic circuits, which are mostly located along the critical path of circuits. Therefore, the design of low-power and high-speed full adder cells is critical. In this paper, there are two new inexact full adder cells proposed based on Carbon Nanotube Field Effect Transistor (CNFET) technology. Using the HSPICE simulator by applying the ۳۲ nm Stanford model, extensive simulations are performed at the transistor level. Different supply voltages, output loads, and ambient temperatures are involved in the operation of the cells. In addition, by applying Monte Carlo transient analysis, the effects of diameter variations of carbon nanotubes (CNTs) are examined on the performance of the proposed cells. Considering the application level, these cells are studied in image processing through MATLAB software. The superiority of the proposed cells compared to their counterparts is confirmed by extensive simulations.
Keywords:
Authors
Yavar Safaei Mehrabani
Department of Electrical and Computer Engineering, North Tehran Branch, Islamic Azad University, Tehran, Iran.
Mokhtar Mohammadi Ghanatghestani
Department of Computer Engineering, Bam Branch, Islamic Azad University, Bam, Iran.
Rabee SharifiRad
Department of Computer Engineering, Kerman Branch, Islamic Azad University, Kerman, Iran.
Ali Mohammad Hassanzadeh
European School of Business, Reutlingen University, Reutlingen, Germany.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :