سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

A NEW APPROACH FOR PARAMETER ESTIMATION IN FUZZY LOGISTIC REGRESSION

Publish Year: 1397
Type: Journal paper
Language: English
View: 195

This Paper With 12 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_IJFS-15-1_006

Index date: 8 June 2022

A NEW APPROACH FOR PARAMETER ESTIMATION IN FUZZY LOGISTIC REGRESSION abstract

Logistic regression analysis is used to model categorical dependent variable. It is usually used in social sciences and clinical research. Human thoughts and disease diagnosis in clinical research contain vagueness. This situation leads researchers to combine fuzzy set and statistical theories. Fuzzy logistic regression analysis is one of the outcomes of this combination and it is used in situations where the classical logistic regression assumptions' are not satisfied. Also it can be used if the observations or their relations are vague.  In this study, a model called “Fuzzy Logistic Regression Based on Revised Tanaka's Fuzzy Linear Regression Model” is proposed. In this regard, the methodology and formulation of the proposed model is explained in detail and the revised Tanaka's regression model is used to estimate the parameters. The Revised Tanaka's Regression model is an extension of Tanaka's Regression Model in which the objection function is developed.  An application is performed on birth weight data set. Also, an application of diabetes data set used in Pourahmad et al.'s study was conducted via our proposed data set. The validity of the model is shown by the help of goodness – of –fit criteria called Mean Degree Memberships (MDM).

A NEW APPROACH FOR PARAMETER ESTIMATION IN FUZZY LOGISTIC REGRESSION Keywords:

Fuzzy logistic regression , Revised Tanaka regression model , MDM criteria

A NEW APPROACH FOR PARAMETER ESTIMATION IN FUZZY LOGISTIC REGRESSION authors

GULTEKIN ATALIK

Department of Statistics, Anadolu University, Eskisehir, Turkey and Department of Statistics, Amasya University, Amasya,Turkey

Sevil Senturk

Department of Statistics, Anadolu University, Eskisehir, Turkey

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
G. Atalik, A New Approach for Parameter Estimation in Fuzzy ...
H. Bircan, Lojistik Regresyon Analizi: Tp Verileri zerine Bir Uygulama, ...
R. M. Dom, S. A. Kareem, A. Razak and B. ...
Y. Q. He, L. K. Chan and M. L. Wu, ...
S. S. Hirve and B. R. Ganatra, Determinants of low ...
D. W. Hosmer and S. Lemeshow, Applied Logistic Regression, John ...
D. G. Kleinbaum and M. Klein, Logistic Regression, A Self-Learning ...
E. Kirimi and S. Pence, The affects of smoking during ...
D. C. Montgomery, E. A. Peck and G. G. Vining, ...
P. Nagar and S. Srivastava, Adaptive fuzzy regression model for ...
M. Namdari, A. Abadi, S. M. Taheri, M. Rezaei, M. ...
M. Namdari, J. H. Yoon, A. Abadi, S. M. Taheri ...
S. Pourahmad, S. M. T. Ayatollahi and S. M. Taheri, ...
S. Pourahmad, S. M. Ayatollahi and S. M. Taheri, Fuzzy ...
H. Tanaka, S. Uejima and K. Asai, Lineer regression analysis ...
L. A. Zadeh, Fuzzy sets, Information and Control, ۸ (۱۹۶۵), ...
L. A. Zadeh, Discussion: probability theory and fuzzy logic are ...
نمایش کامل مراجع