A hybrid model for predicting bitcoin price using machine learning and metaheuristic algorithms
Publish Year: 1401
نوع سند: مقاله ژورنالی
زبان: English
View: 234
This Paper With 17 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_APRIE-9-1_010
تاریخ نمایه سازی: 30 خرداد 1401
Abstract:
Cryptocurrencies are considered as new financial and economic tools having special and innovative features, among which Bitcoin is the most popular. The contribution of the Bitcoin market continues to grow due to the special nature of Bitcoin. The investors' attention to Bitcoin has increased significantly in recent years due to significant growth in its prices. It is important to create a prediction system which works well for investment management and business strategies due to the high chaos and volatility of Bitcoin prices. In this study, in order to improve predictive accuracy, Bitcoin price dataset is first divided into a time interval through time window, then propose a new model based on Long Short-Term Memory (LSTM) neural networks and Metaheuristic algorithms. Chaotic Dolphin Swarm Optimization algorithm is used to optimize the LSTM. Performance evaluation indicated that the proposed model can have more effective predictions and improve prediction accuracy. In addition, the performance of the optimized model is better and more reliable than other models.
Keywords:
Authors
Aboosaleh Mohammad Sharifi
Department of Information Technology Management, North Tehran Branch, Islamic Azad University, Tehran, Iran.
Kaveh Khalili Damghani
Department of Industrial Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran.
Farshid Abdi
Department of Industrial Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran.
Soheila Sardar
Department of Industrial Management, North Tehran Branch, Islamic Azad University, Tehran, Iran.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :