A SOLUTION TO AN ECONOMIC DISPATCH PROBLEM BY A FUZZY ADAPTIVE GENETIC ALGORITHM
Publish place: Iranian Journal of Fuzzy Systems، Vol: 8، Issue: 3
Publish Year: 1390
نوع سند: مقاله ژورنالی
زبان: English
View: 204
This Paper With 21 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJFS-8-3_002
تاریخ نمایه سازی: 7 تیر 1401
Abstract:
In practice, obtaining the global optimum for the economic dispatch {bf (ED)}problem with ramp rate limits and prohibited operating zones is presents difficulties. This paper presents a new andefficient method for solving the economic dispatch problem with non-smooth cost functions using aFuzzy Adaptive Genetic Algorithm (FAGA). The proposed algorithm deals with the issue ofcontrolling the exploration and exploitation capabilities of a heuristic search algorithm in whichthe real version of Genetic Algorithm (RGA) is equipped with a Fuzzy Logic Controller (FLC)which can efficiently explore and exploit optimum solutions. To validate the results obtainedby the proposed FAGA, it is compared with a Real Genetic Algorithm (RGA). Moreover, the resultsobtained by FAGA and RGA are also compared with those obtained by other approaches reported in the literature.It was observed that the FAGA outperforms the other methods in solving the power system economicload dispatch problem in terms of quality, as well as convergence and success rates.
Keywords:
Economic dispatch , Genetic Algorithm , %Fuzzy adaptive genetic algorithm , Non-smooth cost functions
Authors
H. Nezamabadi-pour
Electrical Engineering Department, Shahid Bahonar University of Kerman, Kerman, Iran
S. Yazdani
Electrical Engineering Department, Shahid Bahonar University of Kerman, Kerman, Iran
M. M. Farsangi
Electrical Engineering Department, Shahid Bahonar University of Kerman, Kerman, Iran
M. Neyestani
Electrical Engineering Department, Shahid Bahonar University of Kerman, Kerman, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :