سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Numerical Study of the L/D Ratio and Turbulent Prandtl Number Effect on Energy Separation in a Counter-Flow Vortex Tube

Publish Year: 1401
Type: Journal paper
Language: English
View: 167

This Paper With 9 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_JAFM-15-5_017

Index date: 4 July 2022

Numerical Study of the L/D Ratio and Turbulent Prandtl Number Effect on Energy Separation in a Counter-Flow Vortex Tube abstract

Vortex tube is a device without moving parts with ability to separate pressurized gas into two streams: cold and hot. This is a consequence of the Eckert-Wiese effect, which is responsible for spontaneous redistribution of total energy within the flow domain. In order for vortex tubes to work properly, there are some constraints which have to be fulfilled. The most important constraint in that sense is the L/D ratio. One part of this paper is dedicated to the research of the influence of L/D ratio on the energy separation in a vortex tube, i.e. to the values of total temperatures on cold and hot outlets of the device. On the other hand, experimental research of the inner flow is quite challenging since vortex tube is a device of small dimensions. Hence, we are relaying on numerical computations. One of important quantities that has to be prescribed in these computations is the turbulent Prandtl number PrT. Because of that, the other part of this paper is dedicated to research of the influence of PrT on the results of numerical computations. The research is conducted using open-source software OpenFOAM. Turbulence is modelled using two-equation and RST models. For small L/D ratios there is a secondary circulation that acts as a refrigeration cycle, and for greater L/D ratios distribution of velocity and temperature inside the vortex tube remains the same, regardless of the stagnation point presence. It is not justified to increase the length of the vortex tube beyond 20D since the change in cold total temperature inside the vortex tube as well at the cold outlet is practically null. For L/D variation from 1.8 to 10, the cold outlet temperature changes from 270.9 K to 266.8 K, and then rises to its final value of 270.5 K. For L/D ratio from 20 to 60, the total temperature at cold end remains unchanged at 271.3 K. We obtained good results with the unit value of turbulent Prandtl number, and demonstrated that increasing the PrT beyond unit value is not necessary in order to numerically obtain the energy separation inside the vortex tube.

Numerical Study of the L/D Ratio and Turbulent Prandtl Number Effect on Energy Separation in a Counter-Flow Vortex Tube Keywords:

Numerical Study of the L/D Ratio and Turbulent Prandtl Number Effect on Energy Separation in a Counter-Flow Vortex Tube authors

J. Burazer

University of Belgrade, Faculty of Mechanical Engineering, Kraljice Marije ۱۶, ۱۱۱۲۰ Belgrade ۳۵, Serbia

D. Novkovic

University of Belgrade, Faculty of Mechanical Engineering, Kraljice Marije ۱۶, ۱۱۱۲۰ Belgrade ۳۵, Serbia

A. Cocic

University of Belgrade, Faculty of Mechanical Engineering, Kraljice Marije ۱۶, ۱۱۱۲۰ Belgrade ۳۵, Serbia

M. Bukurov

University of Novi Sad, Faculty of Technical Sciences, Trg Dositeja Obradovića ۶, ۲۱۱۰۲ Novi Sad, Serbia

M. Lecic

University of Belgrade, Faculty of Mechanical Engineering, Kraljice Marije ۱۶, ۱۱۱۲۰ Belgrade ۳۵, Serbia

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
Ahlborn, B. K. and J. M. Gordon (۲۰۰۰). The vortex ...
Bruun, H. H. (۱۹۶۹). Experimental Investigation of the Energy Separation ...
Burazer, J. M, A. S. Ćoćić and M. R. Lečić ...
Burazer, J. M, Đ. M. Novković, D. M. Knežević and ...
Burazer, J. M. (۲۰۱۸). Energy separation in transient and steady-state ...
Burazer, J. M. (۲۰۱۷, June). Numerical research of energy separation ...
Eiamsa-ard, S. and P. Promvonge (۲۰۰۸). Review of Ranque-Hilsch effects ...
Fröhlingsdorf, W. and H. Unger (۱۹۹۹). Numerical Investigations of the ...
Greenshields, C. J. (۲۰۱۵). OpenFOAM, The Open Source CFD Toolbox ...
Kays, W. M. (۱۹۹۴). Turbulent Prandtl number – Where are ...
Kumar, S. A. and S. A. Lal (۲۰۲۱). Effects of ...
Launder, B. and B. Sharma (۱۹۷۴). Application of the Energy ...
Menter, F. and T. Esch (۲۰۰۱, November). Elements of Industrial ...
Singh, P. K, R. G. Tathgir, G. Dasaroju and G. ...
Tanweer, S, A. Dewan and S. Sanghi (۲۰۱۹). Study on ...
Vodret, S, D. Vitale Di Maio and G. Caruso (۲۰۱۴). ...
Yilmaz, M, M. Kaya, S. Karagoz and S. Erdogan (۲۰۰۹). ...
نمایش کامل مراجع