Railway Turnout Defect Detection Using Image Processing
Publish Year: 1401
Type: Journal paper
Language: English
View: 289
This Paper With 10 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
Export:
Document National Code:
JR_IJTE-10-1_001
Index date: 16 July 2022
Railway Turnout Defect Detection Using Image Processing abstract
Despite other modes of transportation, trains move just along one dimension. However, trains inevitably change their track or move to the opposite track in railway stations and ports using switch systems. Switches are vital for better operation and seamless movement of trains. Furthermore, they are crucial for the safety of movement in tracks due to high derailment potentials at switches; therefore, all parts of switches need to be continuously monitored. An increasing number of accidents in railway systems is highly dependent on switch performance. According to the Islamic Republic of Iran Railways, 90 percent of railway accidents in Tehran stations occur on switches, from which 25 percent happen due to switch defects. Therefore, condition evaluation of switches is of significant importance. Research studies have not been sufficiently conducted on automated condition evaluation of switches. This paper aims to develop a robust automated approach to evaluate switch conditions to be able to measure switch defects. Having taken some pictures from various switches with fixed angles and distance from rails, an image processing technique is applied to determine defects. The first step of image processing is to preprocess the images to increase their quality. The second step is to indicate the type and severity of defects using different algorithms. A Graphical User Interface (GUI) is developed to develop a user-friendly tool to be able to load images, preprocess the images, measure defects, and report the health condition of switches. Finally, the outcomes are validated by applying ground truth, which ends up with high accuracy of approximation of 87 percent.
Railway Turnout Defect Detection Using Image Processing Keywords:
Railway Turnout Defect Detection Using Image Processing authors
Zahra Fathollahi
Department of Civil Engineering, Amirkabir University of Technology, Tehran, Iran
Amir Golroo
Department of Civil Engineering, Amirkabir University of Technology, Tehran, Iran
Morteza Bagheri
School of Railway Engineering, Iran University of Science and Technology, Tehran, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :