سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Predicting the capacity of solar farms using a Linear Regression algorithm toreplace renewable energy with fossil fuels

Publish Year: 1401
Type: Conference paper
Language: English
View: 144

متن کامل این Paper منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل Paper (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دانلود نمایند.

Export:

Link to this Paper:

Document National Code:

NCECM01_028

Index date: 31 July 2022

Predicting the capacity of solar farms using a Linear Regression algorithm toreplace renewable energy with fossil fuels abstract

Global climate change necessitates prompt action to minimize greenhouse gas emissions from fossil-fuel-fired electricity generation facilities. Solar thermal energy may be used in a variety of ways to replace heat provided by fossil fuels in existing power facilities. In this study, using the Linear Regression algorithm, the powers of a solar farm were predicted and a very good value of 1.0722 was achieved for the RMSE evaluation criterion. It is easy to think of replacing renewable energy with fossil fuels

Predicting the capacity of solar farms using a Linear Regression algorithm toreplace renewable energy with fossil fuels Keywords:

Predicting the capacity of solar farms using a Linear Regression algorithm toreplace renewable energy with fossil fuels authors

Seyed Matin Malakoti

Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran

Amir Rikhtehgar Ghiasi

Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran

Amir Rikhtehgar Ghiasi

Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran