سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Machine learning techniques for predicting the production capacity of a windfarm based on daily wind speed data

Publish Year: 1401
Type: Conference paper
Language: English
View: 141

متن کامل این Paper منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل Paper (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دانلود نمایند.

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

Export:

Link to this Paper:

Document National Code:

NCECM01_029

Index date: 31 July 2022

Machine learning techniques for predicting the production capacity of a windfarm based on daily wind speed data abstract

Among renewable energy sources, wind energy is a substantial and suitable source with the capacity to provide electricity continuously and sustainably. However, wind energy has some obstacles, including high initial investment prices, the fixed nature of wind turbines, and the difficulty in locating wind-efficient energy zones. Long-term wind power forecasting was accomplished in this work by utilizing two machine learning algorithms based on daily wind speed data. We suggested a system for forecasting wind power values based on machine learning algorithms. The findings indicated that machine learning techniques might be used to anticipate long-term wind power values based on past wind speed data. Furthermore, the results demonstrated that machine learning-based models could be applied to not model-trained sites. This research revealed that machine learning techniques might be effectively used before constructing wind turbines in an unknown geographical region

Machine learning techniques for predicting the production capacity of a windfarm based on daily wind speed data Keywords:

Machine learning techniques for predicting the production capacity of a windfarm based on daily wind speed data authors

Seyed Matin Malakoti

Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran

Amir Rikhtehgar Ghiasi

Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran