شناسایی پارامترهای بارهای الکتریکی با استفاده از ساختار چند متغیره مبتنی بر یادگیری عمیق
Publish Year: 1402
Type: Journal paper
Language: Persian
View: 275
This Paper With 17 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
Export:
Document National Code:
JR_JIPET-14-56_003
Index date: 12 August 2022
شناسایی پارامترهای بارهای الکتریکی با استفاده از ساختار چند متغیره مبتنی بر یادگیری عمیق abstract
مدل سازی بار یکی از وظایف ضروری در مطالعات سیستم های قدرت محسوب میشوند. با توسعه سیستم های قدرت این مسئله بیش از پیش پیچیدهتر شده است. روش های پیشین مدل سازی بار دارای عیوب اساسی مانند الف) حساسیت بالا به نویز، ب) عدم لحاظ همگرایی بارهای الکتریکی در یک شبکه، ج) وابستگی به مدل ریاضی، د) بار محاسباتی بالا و ه) وابستگی به اندازه گیری محلی هستند. برای رفع این مشکلات، در این مقاله یک ساختار مبتنی بر یادگیری عمیق توسعه داده شده است که قادر به شناسایی تعداد زیادی از پارامترهای بار بهصورت همزمان با سرعت و دقت مطلوب است. ساختار طراحی شده قادر به درک کامل ویژگی های زمانی بر مبنای یک ساختار حافظه دار بازگشتی است. همچنین، برای تخمین تعداد متغیرهای زیاد یک روش اختصاص دهی وزن برای این مدل توسعه داده شده است. نهایتا، یک تابع تلفات فرمول بندی شده است تا مقاوم بودن ساختار در برابر با نویز را افزایش دهد. مطالعات عددی بر روی شبکه ۶۸-شینه IEEE موثر بودن و برتری روش پیشنهادی را در مقایسه با تعدادی از روش های کم -عمق و عمیق را نشان میدهد.
شناسایی پارامترهای بارهای الکتریکی با استفاده از ساختار چند متغیره مبتنی بر یادگیری عمیق Keywords:
تابع تلفات , ساختار یادگیری عمیق چند متغیره , سیستم اندازه گیری گسترده , شبکه بازگشتی حافظه دار , مدل سازی بار
شناسایی پارامترهای بارهای الکتریکی با استفاده از ساختار چند متغیره مبتنی بر یادگیری عمیق authors
امید ایزدی قهفرخی
دانشکده مهندسی برق- واحد مرودشت، دانشگاه آزاد اسلامی، مرودشت، ایران
مزدا معطری
مرکز تحقیقات مکاترونیک و هوش مصنوعی- واحد مرودشت، دانشگاه آزاد اسلامی، مرودشت، ایران
احمد فروزان تبار
دانشکده مهندسی برق- واحد مرودشت، دانشگاه آزاد اسلامی، مرودشت، ایران
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :