Prediction of Material Removal Rate in Ductile–Mode Micro Ultrasonic Machining
Publish place: International Journal of Advanced Design and Manufacturing Technology، Vol: 14، Issue: 4
Publish Year: 1400
Type: Journal paper
Language: English
View: 158
This Paper With 6 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
JR_ADMTL-14-4_013
Index date: 16 August 2022
Prediction of Material Removal Rate in Ductile–Mode Micro Ultrasonic Machining abstract
This paper presents a model to predict Material Removal Rate (MRR) in Micro Ultrasonic Machining (micro-USM). The proposed model is developed based on the ductile-mode of material removal in micro-USM process. The correlation between ductile material removal rate and process parameters including frequency and amplitude of the ultrasonic vibration, particle size, and slurry concentration is presented. The proposed predictive model is verified by performing micromachining experiments using two types of workpiece materials including silicon and quartz at various process parameters levels. The results show that the MRR increases with a rise in vibration amplitude for both silicon and quartz materials. The experimental MRR values follow a trend similar to that of predicted MRR values. However, the predicted MRR values are higher than the measured MRR values for both silicon and quartz materials. The measured MRR values for ductile removal mode were found to have a considerable increase at vibration amplitudes of 2 mm and 2.4 mm for silicon and quartz, respectively, which is in favour of increasing the accuracy of the model prediction.
Prediction of Material Removal Rate in Ductile–Mode Micro Ultrasonic Machining Keywords:
Prediction of Material Removal Rate in Ductile–Mode Micro Ultrasonic Machining authors
Hamid Zarepour
Department of Mechanical Engineering, Modern Manufacturing Technologies Research Center (MMTRC), Najafabad Branch, Islamic Azad University, Najafabad, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :