Design of nanoscale self switching diodes with high rectification ratio based on two-dimensional semiconductor hBCN
Publish place: International Journal of Nano Dimension، Vol: 13، Issue: 4
Publish Year: 1401
Type: Journal paper
Language: English
View: 206
This Paper With 6 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
JR_IJND-13-4_006
Index date: 4 October 2022
Design of nanoscale self switching diodes with high rectification ratio based on two-dimensional semiconductor hBCN abstract
In this paper, we present a new self-switching diode (SSD) realized with a two-dimensional semiconductor hexagonal boron carbon-nitrogen (hBCN) monolayer. Channel length and width are 4.5 nm and 1.23 nm respectively. The device operation is simulated based on the Extended Huckel method and Nonequilibrium Green’s Function (NEGF) Formalism. The simulation results indicate non-linear I-V characteristics of the nano-diode and a current rectification ratio near 11250 that is higher than previous SSD structures reported before. Also, the effects of channel width on the electrical characteristics of SSDs are investigated. It can be found that the bandgap value of hBCN plays an important role in the modulation of current in the channel. Transmission pathways are provided under reverse and forward biases to show channel opening and pinch-off conditions. The results indicate that hBCN is a promising material for the realization of self-switching diodes (SSDs).
Design of nanoscale self switching diodes with high rectification ratio based on two-dimensional semiconductor hBCN Keywords:
Extended Huckel Method , Nanoscale Self Switching Diode , NEGF , Rectification Ratio , Transmission Pathways
Design of nanoscale self switching diodes with high rectification ratio based on two-dimensional semiconductor hBCN authors
Ashkan Horri
Young Researchers and Elite Club, Arak Branch, Islamic Azad University, Arak, Iran.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :