Analysis And Comparison Of Bayesian Learning Algorithms On Meteorological Databases
Publish place: 2nd National Conference Computer and Electrical and IT
Publish Year: 1391
Type: Conference paper
Language: English
View: 2,192
This Paper With 6 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
CCIEEE02_008
Index date: 11 July 2012
Analysis And Comparison Of Bayesian Learning Algorithms On Meteorological Databases abstract
In this paper, we introduce bayesian artificial networks as a causal modeling tool And analyse bayesian learning algorithms. Two important methods of learning bayesian are parameter learning and structure learning. Because of its impact on inference and forecasting results, Learning algorithm selection process in bayesian network is very important. As a first step, key learning algorithms, like Naïve Bayes Classifier, Hill Climbing, K2, LK2, Greedy Thick Thinning are implemented and Are compared based on accuracy and structured network time.. We work with a database of observations (monthly rainfall) measured for the years 1985-2010 in a network of 22 stations in the (Razavi, Shomali And Jonoubi) Khorasan provinces and with the corresponding gridded atmospheric patterns generated by a numerical circulation model. Finally, the best of learning algorithm will be proposed
Analysis And Comparison Of Bayesian Learning Algorithms On Meteorological Databases Keywords:
Analysis And Comparison Of Bayesian Learning Algorithms On Meteorological Databases authors
Alireza Sadeghi Hesar
Mashhad Branch, Islamic Azad University
Hamid Tabatabaee
Ghoochan Branch, Islamic Azad University
Mehrdad Jalali
Mashhad Branch, Islamic Azad University
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :