سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

APPLICATION OF 5.8 S GENE AND ITS, PCR-RFLP PATTERNS IN TAXONOMY OF NEOTYPHODIUM ENDOPHYTIC FUNGI

Publish Year: 1385
Type: Journal paper
Language: English
View: 188

This Paper With 20 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_ROST-7-1_001

Index date: 24 October 2022

APPLICATION OF 5.8 S GENE AND ITS, PCR-RFLP PATTERNS IN TAXONOMY OF NEOTYPHODIUM ENDOPHYTIC FUNGI abstract

Endophytic fungi have mutualistic relationship with the plant family Poaceae. These fungi confer characteristics such as yield increase and biotic and abiotic stress resistance to host plants. Endophytes are classified in the familyClavicipitaceae. The endophytes spend all their life cycle in the aerial parts of plant hosts and live intercellularly. In the present investigation, endophytic fungi were isolated from seed and leaf sheath of Festuca arundinaceae, F. ovina, F. pratensis, Bromus tomentellus, Melica persica and Lolium prenne. Genomic DNA was extracted and three sets of primers: ITS1/ITS4, IS1/IS3 and 111/112 were used to detect and identify endophytes. The results of PCR with three paires of primers indicated that most of isolates used in research were endophytic fungi belonging to Neotyphodium and isolates of F. arundinacea were N. coenophialum.

APPLICATION OF 5.8 S GENE AND ITS, PCR-RFLP PATTERNS IN TAXONOMY OF NEOTYPHODIUM ENDOPHYTIC FUNGI Keywords:

APPLICATION OF 5.8 S GENE AND ITS, PCR-RFLP PATTERNS IN TAXONOMY OF NEOTYPHODIUM ENDOPHYTIC FUNGI authors

سعیده دهقانپور فراشاه

Former graduate student of Plant Pathology College of Agriculture, Isfahan Univ. of Technology, Isfahan, Iran

آقا فخر میرلوحی

Associate Prof. of Plant Breeding, College of Agriculture, Isfahan Univ. of Technology, Isfahan, Iran (E-mail: mirlohi@cc.iut.ac.ir)

بهرام شریف نبی

Assist. Prof. of Mycology College of Agriculture, Isfahan Univ. of Technology, Isfahan, Iran (E-mail: sharifna@cc.iut.ac.ir),

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
منابع در متن می باشد ...
نمایش کامل مراجع