General sum-connectivity index of trees with given number of branching vertices
Publish place: Transactions on Combinatorics، Vol: 12، Issue: 4
Publish Year: 1402
Type: Journal paper
Language: English
View: 164
This Paper With 12 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
JR_COMB-12-4_005
Index date: 16 November 2022
General sum-connectivity index of trees with given number of branching vertices abstract
In 2015, Borovi\'{c}anin presented trees with the smallest first Zagreb index among trees with given number of vertices and number of branching vertices. The first Zagreb index is obtained from the general sum-connectivity index if a = 1. For a \in \mathbb{R}, the general sum-connectivity index of a graph G is defined as \chi_{a} (G) = \sum_{uv\in E(G)} [d_G (u) + d_G (v)]^{a}, where E(G) is the edge set of G and d_G (v) is the degree of a vertex v in G. We show that the result of Borovi\'{c}anin cannot be generalized for the general sum-connectivity index (\chi_{a} index) if 0 < a < 1 or a > 1. Moreover, the sets of trees having the smallest \chi_a index are not the same for 0 < a < 1 and a > 1. Among trees with given number of vertices and number of branching vertices, we present all the trees with the smallest \chi_a index for 0 < a < 1 and a > 1. Since the hyper-Zagreb index is obtained from the \chi_a index if a = 2, results on the hyper-Zagreb index are corollaries of our results on the \chi_a index for a > 1.
General sum-connectivity index of trees with given number of branching vertices Keywords:
General sum-connectivity index of trees with given number of branching vertices authors
Tomas Vetrik
Department of Mathematics and Applied Mathematics, University of the Free State, Bloemfontein, South Africa
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :