سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

General sum-connectivity index of trees with given number of branching vertices

Publish Year: 1402
Type: Journal paper
Language: English
View: 164

This Paper With 12 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_COMB-12-4_005

Index date: 16 November 2022

General sum-connectivity index of trees with given number of branching vertices abstract

In 2015, Borovi\'{c}anin presented trees with the smallest first Zagreb index among trees with given number of vertices and number of branching vertices. The first Zagreb index is obtained from the general sum-connectivity index if a = 1. For a \in \mathbb{R}, the general sum-connectivity index of a graph G is defined as \chi_{a} (G) = \sum_{uv\in E(G)} [d_G (u) + d_G (v)]^{a}, where E(G) is the edge set of G and d_G (v) is the degree of a vertex v in G. We show that the result of Borovi\'{c}anin cannot be generalized for the general sum-connectivity index (\chi_{a} index) if 0 < a < 1 or a > 1. Moreover, the sets of trees having the smallest \chi_a index are not the same for 0 < a < 1 and a > 1. Among trees with given number of vertices and number of branching vertices, we present all the trees with the smallest \chi_a index for 0 < a < 1 and a > 1. Since the hyper-Zagreb index is obtained from the \chi_a index if a = 2, results on the hyper-Zagreb index are corollaries of our results on the \chi_a index for a > 1.

General sum-connectivity index of trees with given number of branching vertices Keywords:

General sum-connectivity index of trees with given number of branching vertices authors

Tomas Vetrik

Department of Mathematics and Applied Mathematics, University of the Free State, Bloemfontein, South Africa

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
M. Aghel, A. Erfanian and A.R. Ashrafi, On the first ...
Comb. ۸ no. ۳ (۲۰۱۹) ۲۹–۳۹ ...
S. Ahmed, On the maximum general sum-connectivity index of trees ...
A. Ali, L. Zhong and I. Gutman, Harmonic index and ...
B. Borovićanin, On the extremal Zagreb indices of trees with ...
Q. Cui and L. Zhong, On the general sum-connectivity index ...
Z. Du, B. Zhou and N. Trinajstić, On the general ...
I. Gutman, D. Hanyuan, S. Balachandran, S.K. Ayyaswamy and Y.B. ...
M.K. Jamil and I. Tomescu, General sum-connectivity index of trees ...
M.K. Jamil and I. Tomescu, Minimum general sum-connectivity index of ...
M. Liang, B. Cheng and J. Liu, Solution to the ...
H. Liu and Z. Tang, Maximal hyper-Zagreb index of trees, ...
I. Tomescu and M.K. Jamil, Maximum general sum-connectivity index for ...
I. Tomescu and S. Kanwal, Ordering trees having small general ...
Comput. Chem. ۶۹ no. ۳ (۲۰۱۳) ۵۳۵–۵۴۸ ...
T. Vetrı́k, General Randić index of trees with given number ...
۲۸۴ (۲۰۲۰) ۳۰۱–۳۱۵ ...
B. Zhou and N. Trinajstić, On general sum-connectivity index, J. ...
L. Zhong and Q. Qian, The minimum general sum-connectivity index ...
Malays. Math. Sci. Soc., ۴۳ no. ۲ (۲۰۲۰) ۱۵۲۷–۱۵۴۴ ...
Z. Zhu and W. Zhang, Trees with a given order ...
نمایش کامل مراجع