ECG Arrhythmia Classification based on Convolutional Autoencoders and Transfer Learning

Publish Year: 1401
نوع سند: مقاله ژورنالی
زبان: English
View: 47

This Paper With 6 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_MJEE-16-3_006

تاریخ نمایه سازی: 2 آذر 1401

Abstract:

An Electrocardiogram (ECG) is a test that is done with the objective of monitoring the heart’s rhythm and electrical activity. It is conducted by attaching a specific type of sensor to the subject’s skin to detect the signals generated by the heartbeats. These signals can reveal significant information about the wellness of the subjects’ heart state, and cardiologists use them to detect abnormalities. Due to the prevalence of heart diseases amongst individuals around the globe, there is an urgent need to design computer-aided approaches to automatically analyze ECG signals. Recently, computer vision-based techniques have demonstrated remarkable performance in medical image analysis in a variety of applications and use cases. This paper proposes an approach based on Convolutional Autoencoders (CAEs) and Transfer Learning (TL). Our approach is an ensemble way of learning, the most useful features from both the signal itself, which is the input of the CAE, and the spectrogram version of the same signal, which is fed to a convolutional feature extractor named MobileNetV۱. Based on the experiments conducted on a dataset collected from ۳ well-known hospitals in Baghdad, Iraq, the proposed method claims good performance in classifying four types of problems in the ECG signals. Achieving an accuracy of ۹۷.۳% proves that our approach can be remarkably fruitful in situations where access to expert human resources is scarce.

Authors

Rasool Muayad Obaidi

College of MLT, Ahl Al Bayt University, Kerbala, Iraq

Riam Abdul Sattar

Al Farahidi University / College of Law/ Iraq

Mayada Abd

Al-Manara College For Medical Sciences, Maysan, Iraq

Inas Amjed Almani

Department of Computer Technology Engineering, Al-Hadba University College, Iraq

Tawfeeq Alghazali

College of Media, Department of Journalism, The Islamic University in Najaf, Najaf, Iraq

Saad Ghazi Talib

Law Department, Al-Mustaqbal University College, Babylon, Iraq

Muneam Hussein Ali

Al-Nisour University College, Iraq

Mohammed Q. Mohammed

Al-Esraa University College, Baghdad, Iraq

Tuqaa Abid Mohammad

Department of Dentistry, Al-Zahrawi University College, Karbala, Iraq

Mariam Raheem Abdul-Sahib

Medical device engineering, Ashur University College, Baghdad, Iraq

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Ebrahimi Z, Loni M, Daneshtalab M, Gharehbaghi A, “A review ...
  • Sahoo S, Dash M, Behera S, Sabut S, “Machine learning ...
  • Huang J, Chen B, Yao B, He W, “ECG arrhythmia ...
  • Sai YP, “A review on arrhythmia classification using ECG signals,” ...
  • Mathunjwa BM, Lin YT, Lin CH, Abbod MF, Shieh JS ...
  • Houssein EH, Ibrahim IE, Neggaz N, Hassaballah M, Wazery YM, ...
  • Sangaiah AK, Arumugam M, Bian GB, “An intelligent learning approach ...
  • Wu M, Lu Y, Yang W, Wong SY, “A study ...
  • Pisner DA, Schnyer DM, “Support vector machine,” In Machine learning ...
  • Probst P, Wright MN, Boulesteix AL, “Hyperparameters and tuning strategies ...
  • Dong Y, Ma X, Fu T, “Electrical load forecasting: A ...
  • Samek W, Montavon G, Lapuschkin S, Anders CJ, Müller KR, ...
  • Alfaras M, Soriano MC, Ortin S, “A fast machine learning ...
  • Sharghi E, Nourani V, Najafi H, Molajou A, “Emotional ANN ...
  • Nourani V, Davanlou Tajbakhsh A, Molajou A, Gokcekus H, “Hybrid ...
  • Nourani V, Molajou A, Tajbakhsh AD, Najafi H, “A wavelet ...
  • Nourani V, Molajou A, “Application of a hybrid association rules/decision ...
  • Karimi D, Dou H, Warfield SK, Gholipour A, “Deep learning ...
  • Singh A, Sengupta S, Lakshminarayanan V, “Explainable deep learning models ...
  • Budd S, Robinson EC, Kainz B “A survey on active ...
  • Fourcade A, Khonsari RH, “Deep learning in medical image analysis: ...
  • Hibat-Allah M, Ganahl M, Hayward LE, Melko RG, Carrasquilla J, ...
  • Li Z, Liu F, Yang W, Peng S, Zhou J, ...
  • Shaker AM, Tantawi M, Shedeed HA, Tolba M, “Generalization of ...
  • Jiang J, Chen M, Fan JA, “Deep neural networks for ...
  • Wasimuddin M, Elleithy K, Abuzneid AS, Faezipour M, Abuzaghleh O, ...
  • Jun, Tae Joon, Hoang Minh Nguyen, Daeyoun Kang, Dohyeun Kim, ...
  • Acharya, U. Rajendra, Hamido Fujita, Muhammad Adam, Oh Shu Lih, ...
  • Zhou, Lin, Yan Yan, Xingbin Qin, Chan Yuan, Dashun Que, ...
  • Sannino G., and G. De Pietro, “A Deep Learning Approach ...
  • Jo JM, “Effectiveness of normalization pre-processing of big data to ...
  • Singh D, Singh B, “Investigating the impact of data normalization ...
  • Koonce B, “EfficientNet,” InConvolutional neural networks with swift for tensorflow ...
  • Tan M, Le Q, “Efficientnet: Rethinking model scaling for convolutional ...
  • Atila Ü, Uçar M, Akyol K, Uçar E, “Plant leaf ...
  • Chow JK, Su Z, Wu J, Tan PS, Mao X, ...
  • Ahmed AS, El-Behaidy WH, Youssif AA, “Medical image denoising system ...
  • Saravanan S, Sujitha J, “Deep medical image reconstruction with autoencoders ...
  • Öztürk Ş, “Stacked auto-encoder based tagging with deep features for ...
  • نمایش کامل مراجع