From symplectic eigenvalues of positive definite matrices to their pseudo-orthogonal eigenvalues
Publish Year: 1401
Type: Journal paper
Language: English
View: 202
متن کامل این Paper منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل Paper (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دانلود نمایند.
- Certificate
- I'm the author of the paper
Export:
Document National Code:
JR_CMCMA-1-1_002
Index date: 24 November 2022
From symplectic eigenvalues of positive definite matrices to their pseudo-orthogonal eigenvalues abstract
Williamson's theorem states that every real symmetric positive definite matrix A of even order can be brought to diagonal form via a symplectic T-congruence transformation. The diagonal entries of the resulting diagonal form are called the symplectic eigenvalues of A. We point at an analog of this classical result related to Hermitian positive definite matrices, *-congruences, and another class of transformation matrices, namely, pseudo-unitary matrices. This leads to the concept of pseudo-unitary (or pseudo-orthogonal, in the real case) eigenvalues of positive definite matrices.
From symplectic eigenvalues of positive definite matrices to their pseudo-orthogonal eigenvalues Keywords:
From symplectic eigenvalues of positive definite matrices to their pseudo-orthogonal eigenvalues authors
Kh.D. Ikramov
aMoscow Lomonosov State University, Moscow, Russia