Stock Price Forecasting with Support Vector Regression Based on Social Network Sentiment Analysis and Technicl Analysis
Publish Year: 1402
نوع سند: مقاله ژورنالی
زبان: English
View: 297
This Paper With 12 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJFMA-8-29_005
تاریخ نمایه سازی: 18 دی 1401
Abstract:
This study predicts Price of stocks in the short term by using the analysis of investors' opinions of the social network. The predictability of stock markets, due to having a complex, dynamic and nonlinear system that it has always been one of the challenges for researchers. The effect of users' feelings on the social network and its combination with ۲۰ technical indicators on the accuracy of stock price forecasting. The study period is from the beginning of April ۲۰۱۶ to the end of March ۲۰۱۷ (two years). To access sufficient data, a sample of ۱۴ active companies that had the most comments and posts. Data mining of technical indicators was performed and support vector regression was used to predict. The results show that the use of technical indicators is more accurate compared to combining it with the aggregation of users' emotions and has less RMSE errors. The number of comments has a significant correlation and the results of Granger causality test showed that it is possible to use the aggregation of users' daily emotions to predict stock prices.
Authors
KAMEL Ebrahimian
Phd-studentat Department of Management، Faculty of Management and Accounting، Qazvin Branch، Islamic Azad University، Qazvin ، Iran
Ebrahim Abbasi
Associate professor at AL-Zahra University.
akbar alam tabriz
Professor at Department of Industrial Management ، Management and Accounting Faculty ، Shahid Beheshti University ، Tehran ، Iran
amir mohammadzadeh
Department of Industrial at Department of Management، Islamic Azad University Qazvin، Qazvin، Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :