سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Numerical Study of Microstructures and Roughness Design Effects on Surface Hydrophilicity through the Lattice Boltzmann Method

Publish Year: 1402
Type: Journal paper
Language: English
View: 171

This Paper With 13 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_JAFM-16-3_012

Index date: 9 January 2023

Numerical Study of Microstructures and Roughness Design Effects on Surface Hydrophilicity through the Lattice Boltzmann Method abstract

Hydrophilicity is one of the most vital characteristics of titanium (Ti) implants. Surface structure design is a powerful and efficient strategy for improving the intrinsic hydrophilic ability of Ti implants. Existing research has focused on experimental exploration, and hence, a reliable numerical model is needed for surface structure design and corresponding hydrophilicity prediction. To address this challenge, we proposed a numerical model to analyze the droplet dynamics on Ti surfaces with specific microstructures designed through the lattice Boltzmann method (LBM). In this work, a Shan-Chen (SC) model was applied in the simulations. We simulated droplets spreading on smooth and micropillar surfaces with various wettability and provided a comprehensive discussion of the edge locations, contact line, droplet height, contact area, surface free energy, and forces to reveal more details and mechanisms. To better tune and control the surface hydrophilicity, we investigated the effects of micropillar geometric sizes (pillar width a, height h, and pitch b) on hydrophilicity via single factor analysis and the response surface method (RSM). The results show that the hydrophilicity initially increases and then decreases with an increasing a, increases with an increasing h, and decreases with an increasing d. In addition, the interaction effects of a-d and h-d are significant. The optimization validation of the RSM also demonstrates the accuracy of our lattice Boltzmann (LB) model with an error of 0.687%. Here, we defined a dimensionless parameter ξ to integrate the geometric parameters and denote the surface roughness. The hydrophilicity of Ti surfaces improves with an increasing surface roughness. In addition, the effect of the microstructure geometry shape was investigated under the same value of surface roughness. Surfaces with micropillars show the best hydrophilicity. Moreover, this study is expected to provide an accurate and reliable LB model for predicting and enhancing the intrinsic hydrophilicity of Ti surfaces via specific microstructure and roughness designs.

Numerical Study of Microstructures and Roughness Design Effects on Surface Hydrophilicity through the Lattice Boltzmann Method Keywords:

Numerical Study of Microstructures and Roughness Design Effects on Surface Hydrophilicity through the Lattice Boltzmann Method authors

X. Y. Zhang

School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan ۴۳۰۰۷۴, China

G. Q. Sun

School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan ۴۳۰۰۷۴, China

C. Li

Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan ۴۳۰۰۲۲, China Wuhan, China

Y. M. Ding

Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan ۴۳۰۰۲۲, China Wuhan, China

X. B. Luo

School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan ۴۳۰۰۷۴, China

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
Abhijith, N. V., C. P. Priyanka, U. Sudeep and K. ...
Aldhaleai, A. and P. A. Tsai (۲۰۲۰). Effect of a ...
Cassie, A. B. D. and S. Baxter (۱۹۴۴). Wettability of ...
Chen, Y., W. P. Peng, X. F. Hu and C. ...
Davar, H., N. M. Nouri and M. Navidbakhsh (۲۰۲۱). Effects ...
Díaz-Cuenca, A., D. Rabadjieva, K. Sezanova, R. Gergulova, R. Ilieva ...
Dong, Y. Q., L. Long, P. Zhang, D. P. Yu, ...
Du, P., D. Song, F. Ren, Q. Xue and H. ...
Ezzatneshan, E. (۲۰۱۹). Simulation of dipole vorticity dynamics colliding viscous ...
Ezzatneshan, E. and H. Vaseghnia (۲۰۱۹). Evaluation of equations of ...
Ezzatneshan, E. and R. Goharimehr (۲۰۲۱). A pseudopotential lattice boltzmann ...
Fei, L. L., F. F. Qin, G. Wang, K. H. ...
Guo, L. X., Y. H. Guo, L. Zhong and J. ...
He, W., P. Yao, D. Chu, H. Sun, Q. Lai, ...
Huang, H., D. T. Thorne, M. G. Schaap and M. ...
Li, M., S. Komasa, S. Hontsu, Y. Hashimoto and J. ...
Liddell, R. S., Z. M. Liu, V. C. Mendes and ...
Lin, G., C. Geng, L. Zhang and F. Hut (۲۰۲۲). ...
Mohammadrezaei, S., M. Siavashi and S. Asiaei (۲۰۲۲). Surface topography ...
Mosas, K. K. A., A. R. Chandrasekar, A. Dasan, A. ...
Pan, C. F., Z. Chen, Q. M. Tang, Z. G. ...
Panda, D., S. Bhaskaran, S. Paliwal, A. Kharaghani, E. Tsotsas ...
Park, J. W., J. H. Seo and H. J. Lee ...
Pham, D. Q., S. Gangadoo, C. C. Berndt, J. Chapman, ...
Sun, Y. L., A. Rahmani, T. Saeed, M. Zarringhalam, M. ...
Tallet, L., V. Gribova, L. Ploux, N. E. Vrana and ...
Tao, B. L., W. K. Zhao, C. C. Lin, Z. ...
Wang, D. H., Q. Q. Sun, M. J. Hokkanen, C. ...
Wang, H., J. Q. Liu, C. T. Wang, S. G. ...
Wang, M. H., Y. M. Xiong, L. M. Liu and ...
Wang, X., B. Xu, Y. Wang and Z. Q. Chen ...
Wenzel, R. N. (۱۹۳۶). Resistance of solid surfaces to wetting ...
Yan, X. X., W. Cao and H. H. Li (۲۰۲۲). ...
Yang, W. E. and H. H. Huang (۲۰۲۱). TiO۲ nanonetwork ...
Yin, Q., Q. Guo, Z. L. Wang, Y. Q. Chen, ...
Zhang, B. J., J. Park, K. J. Kim and H. ...
Zhang, X. Y., M. Y. Huang, Q. Ji and X. ...
Zhang, Z. C., R. G. Xu, Y. Yang, C. A. ...
نمایش کامل مراجع