Maritime Traffic Complexity Visualization: A New Method for Identification of High Opportunity and High Risk Areas
Publish Year: 1400
نوع سند: مقاله ژورنالی
زبان: English
View: 167
This Paper With 9 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJMTE-16-1_005
تاریخ نمایه سازی: 25 دی 1401
Abstract:
A clear understanding of marine traffic complexity is vital for safe and efficient navigation inside ports (e.g., pilotage inside the basin). Built on statistical analysis of vessels’ speed and course over ground extracted from satellite-based Automatic Identification System (AIS) data, an index of maritime traffic situation is developed in this research. After zoning the port basin, this index is calculated at each zone based on a combination of statistical measures (e.g., mean and standard deviation of speed and course over ground), in which vessels’ class based on their size and targeted pier is also incorporated. The model could effectively increase the situational awareness by simple monitoring of navigation activities and reflecting improvements. This becomes possible by identification of high opportunity and high risk zones, i.e., those with high index value which call for operation modification which are far from and close to the infrastructures (e.g., breakwaters), respectively. To explore the model outcome, it is typically applied on the Rajaee port - the largest port of Iran located in the Persian Gulf - and output are discussed with port’s maritime operators to analyze results. This resulted in identification of challenging zones for which pilotage plans could be improved. Also, it provided insight for better implementation of the basin which also could be considered in future development plans of the port.
Keywords:
Authors
Qadir Allahmoradi
Tarbiat Modares University
Roozbeh Panahi
University of Manitoba
Reza Edraki
Tarbiat Modares University
Hassan Akbari
Tarbiat Modares University
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :