Improving of Diabetes Diagnosis using Ensembles and Machine Learning Methods

Publish Year: 1401
نوع سند: مقاله ژورنالی
زبان: English
View: 197

This Paper With 9 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_TDMA-11-1_005

تاریخ نمایه سازی: 26 دی 1401

Abstract:

Diabetes is one of the most common metabolic diseases, and diagnosis of it is a classification problem. The most challenge is this area is missing value problem. Artificial Intelligence techniques have been successfully implemented over medical disease diagnoses. Classification systems aim clinicians to predict the risk factors that cause diabetes. To address this challenge, we introduce a novel model to investigate the role of pre-processing and data reduction for classification problems in the diagnosis of diabetes. The model has four stages consists of Pre-processing, Feature sub-selection, Classification, and Performance. In the classification technique, ensemble techniques such as bagging, boosting, stacking, and voting were used. We considered both states with/without for pre-processing stage to reveal the high performance of our model. Two experiments were conducted to reveal the performance of the model for the diagnosis of diabetics Mellitus. The results confirmed the superiority of the proposed method over the state-of-the-art systems, and the best accuracy and F۱ achieved ۹۷.۱۲% and ۹۷.۴۰%, respectively.

Authors

Razieh Asgarnezhad

Department of Computer Engineering, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran

Karrar Ali Mohsin Alhameedawi

Department of Computer Engineering, Al-Rafidain University of Baghdad, Baghdad, Ira

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :