Lifting Elements in Coherent Quantales
Publish place: Transactions on Fuzzy Sets and Systems، Vol: 1، Issue: 1
Publish Year: 1401
Type: Journal paper
Language: English
View: 242
This Paper With 23 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
JR_TFSS-1-1_009
Index date: 17 January 2023
Lifting Elements in Coherent Quantales abstract
An ideal I of a ring R is a lifting ideal if the idempotents of R can be lifted modulo I. A rich literature has been dedicated to lifting ideals. Recently, new algebraic and topological results on lifting ideals have been discovered. This paper aims to generalize some of these results to coherent quantales. We introduce the notion of lifting elements in a quantale and a lot of results about them are proven. Some properties and characterizations of a coherent quantale in which any element is a lifting element are obtained. The formulations and the proofs of our results use the transfer properties of reticulation, a construction that assigns to each coherent quantale a bounded distributive lattice. The abstract results on lifting elements can be applied to study some Boolean lifting properties in concrete algebraic structures: commutative rings, bounded distributive lattices, residuated lattices, MV-algebras, BL-algebras, abelian l-groups, some classes of universal algebras, etc.
Lifting Elements in Coherent Quantales Keywords:
Lifting Elements in Coherent Quantales authors
George Georgescu
Department of Computer Science Faculty of Mathematics and Informatics, Bucharest University Bucharest, Romania
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :