An effective technique for the conformable space-time fractional cubic-quartic nonlinear Schrodinger equation with different laws of nonlinearity
Publish Year: 1401
Type: Journal paper
Language: English
View: 232
This Paper With 15 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
JR_CMDE-10-3_010
Index date: 29 January 2023
An effective technique for the conformable space-time fractional cubic-quartic nonlinear Schrodinger equation with different laws of nonlinearity abstract
In the present study, we investigate the conformable space-time fractional cubic-quartic nonlinear Schrodinger equation with three different laws of nonlinearity namely, parabolic law, quadratic-cubic law, and weak non-local law. This model governs the propagation of solitons through nonlinear optical fibers. An effective approach namely, the exp(−Φ(ξ)) expansion method is applied to construct some new soliton solutions of the governing model. Consequently, the dark, singular, rational and periodic solitary wave solutions are successfully revealed. The comparisons with other results are also presented. In addition, the dynamical structures of obtained solutions are presented through 3D and 2D plots.
An effective technique for the conformable space-time fractional cubic-quartic nonlinear Schrodinger equation with different laws of nonlinearity Keywords:
Conformable derivative , Fractional cubic-quartic nonlinear Schr¨odinger equation , Soliton solutions , Exp(−Φ(ξ))-expansion method
An effective technique for the conformable space-time fractional cubic-quartic nonlinear Schrodinger equation with different laws of nonlinearity authors
Thilagarajah Mathanaranjan
Department of Mathematics and Statistics University of Jaffna, Sri Lanka.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :