Local fractal Fourier transform and applications
Publish Year: 1401
Type: Journal paper
Language: English
View: 257
This Paper With 13 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
JR_CMDE-10-3_003
Index date: 29 January 2023
Local fractal Fourier transform and applications abstract
In this manuscript, we review fractal calculus and the analogues of both local Fourier transform with its related properties and Fourier convolution theorem are proposed with proofs in fractal calculus. The fractal Dirac delta with its derivative and the fractal Fourier transform of the Dirac delta is also defined. In addition, some important applications of the local fractal Fourier transform are presented in this paper such as the fractal electric current in a simple circuit, the fractal second order ordinary differential equation, and the fractal Bernoulli-Euler beam equation. All discussed applications are closely related to the fact that, in fractal calculus, a useful local fractal derivative is a generalized local derivative in the standard calculus sense. In addition, a comparative analysis is also carried out to explain the benefits of this fractal calculus parameter on the basis of the additional alpha parameter, which is the dimension of the fractal set, such that when α = 1, we obtain the same results in the standard calculus.
Local fractal Fourier transform and applications Keywords:
Fractal calculus , fractal local Fourier transform , fractal differential equation , fractal Fourier Convolution theorem , fractal Dirac delta function
Local fractal Fourier transform and applications authors
Alireza Khalili Golmankhaneh
Department of Physics Islamic Azad University, Urmia Branch Urmia, Iran.
Karmina Ali
Faculty of Science, Department of Mathematics, University of Zakho, Iraq.
Resat Yilmazer
Faculty of Science, Department of Mathematics, Firat University, Elazig, Turkey.
Mohammed Kaabar
Department of Mathematics and Statistics, Washington State University, Pullman, WA, USA.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :