Improving the Detection Rate of Forgery JPEG Images Based on Combining Histogram Features and Discrete Wavelet Transform (DWT) with the Use of Support-Vector Machine
Publish place: majlesi Journal of Electrical Engineering، Vol: 13، Issue: 4
Publish Year: 1398
نوع سند: مقاله ژورنالی
زبان: English
View: 299
This Paper With 11 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_MJEE-13-4_011
تاریخ نمایه سازی: 25 بهمن 1401
Abstract:
Manipulating digital images is not often a difficult task due to the rapid development of software and image manipulation techniques. Hence, there is no need for professional skills or training. When used as an artistic tool, it is completely harmless, but when these images can be presented in judicial system as the evidence or for the creation of political associations, as well as using them in legal documents, electronic money circulation or press, in these cases, the distinction between an original image and a forgery image is very important. In order to solve the problem in this research, by using a discrete wavelet transform (DWT), which is performed by decomposing a signal into smaller and smaller details, as well as the use of periodic patterns in the histogram generated by double compression with different coefficients, significant improvements were made in terms of reducing computations and increasing the detection rate of forging areas. Most of the proposed methods for detecting image forgery use a feature extraction model from a valid and manipulated dataset and then classify them using machine learning with the aim of optimizing accuracy. The method used in paper, using the SVM classification identifies image forgery and then identifies the forging area after it detects the falsification or originality of the image. The results of this study indicate ۹۷.۹۸% accuracy in the Columbia database and ۹۸.۱% in the IFS-TC database.
Keywords:
Authors
Azam Mohammadi
Department of Electrical Engineering, Mobarakeh Branch, Islamic Azad University, Mobarakeh, Iran
Farhad Navabifar
Department of Electrical Engineering, Mobarakeh Branch, Islamic Azad University, Mobarakeh, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :