Stable Rough Extreme Learning Machines for the Identification of Uncertain Continuous-Time Nonlinear Systems
Publish Year: 1398
Type: Journal paper
Language: English
View: 198
This Paper With 20 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
JR_COAM-4-1_006
Index date: 19 February 2023
Stable Rough Extreme Learning Machines for the Identification of Uncertain Continuous-Time Nonlinear Systems abstract
Rough extreme learning machines (RELMs) are rough-neural networks with one hidden layer where the parameters between the inputs and hidden neurons are arbitrarily chosen and never updated. In this paper, we propose RELMs with a stable online learning algorithm for the identification of continuous-time nonlinear systems in the presence of noises and uncertainties, and we prove the global asymptotically convergence of the proposed learning algorithm using the Lyapunov stability theory. Then, we use the proposed methodology to identify the chaotic systems of Duffing's oscillator and Lorentz system. Simulation results show the efficiency of the proposed model.
Stable Rough Extreme Learning Machines for the Identification of Uncertain Continuous-Time Nonlinear Systems Keywords:
System identification , Extreme learning machine , Rough-neural network , Rough extreme learning machine , Lyapunov stability theory
Stable Rough Extreme Learning Machines for the Identification of Uncertain Continuous-Time Nonlinear Systems authors
Ghasem Ahmadi
Payame Noor University (PNU), Tehran, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :