Investigating Alignment Between HRM Configurations and Innovation Strategy Modes in Iranian Knowledge-Based Service Firms
Publish place: Iranian Journal of Management Studies، Vol: 16، Issue: 2
Publish Year: 1402
نوع سند: مقاله ژورنالی
زبان: English
View: 309
This Paper With 15 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JIJMS-16-2_005
تاریخ نمایه سازی: 21 اسفند 1401
Abstract:
This study aims to establish a relationship between HRM and innovation studies through human capital characteristics in order to achieve a better understanding of HRM’s supportive role in innovation realization aligned with knowledge-based services. The study provides a new model of coordination between innovation modes of service sector firms and HR configuration adopted for managing people in these firms. By gathering data about the main variables from ۱۳۲ Iranian knowledge-based service firms with more than ۳۰ employees, all located in Tehran province (selected through systematic sampling), the status of every firm in the field of innovation mode and HR configuration was determined. The hypotheses were tested using contingency tables and binomial test. After testing hypotheses, it was found that the strongest alignment exists between market-oriented innovation and productivity-based HR configuration (at about ۵۳%). The average value for the human capital characteristics in firms that had two mentioned statuses were more than another three statuses. To achieve ideal human capital management, managers of KBSFs need to pay more attention to the compatibility of their HR configurations with innovation modes of KBSFs in order to approach the satisfactory productivity level seen in such firms.
Keywords:
Authors
وجه الله قربانی زاده
Faculty of Management, Allameh Tabataba’i University, Tehran, Iran
راحله منتظر
Faculty of Management, Kharazmi University (KhU), Tehran, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :