Bio-inspired Surface Texture Fluid Drag Reduction using Large Eddy Simulation

Publish Year: 1402
نوع سند: مقاله ژورنالی
زبان: English
View: 214

This Paper With 18 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JAFM-16-6_007

تاریخ نمایه سازی: 12 فروردین 1402

Abstract:

Skin friction drag can be reduced through the application of bio-inspired riblet surfaces. Numerical simulations were performed using Large Eddy Simulation (LES) to investigate the effect of using riblets on reducing skin friction drag. In this study, three different riblet configurations were used; scalloped, sawtooth and a new design, hybrid, riblet. To validate the effect of using the proposed hybrid riblet design compared with other riblets used in the literature; before applying to complex geometries, they were initially applied to a flat plate in parallel arrangement. Results showed skin friction coefficient reduction of ۱۴% using the proposed hybrid riblet. This reduction was ۹.۲ times and ۱.۲ times more compared to sawtooth and scalloped configurations, respectively. The hybrid riblet was then applied partially and fully to NACA ۰۰۱۲ airfoil. Skin friction coefficient reduction of ۳۴.۵% was obtained when the hybrid riblet fully applied on the airfoil surface. Furthermore, the Convergent-Divergent (C-D) arrangement was studied, where the riblets were placed fully on the NACA ۰۰۱۲ and aligned with a yaw angle with respect to the flow direction. The convergent lines are inspired by the sensory part of the shark skin, whereas the divergent lines or herringbone are found on the bird feather. The two different riblet configurations, sawtooth and hybrid were modeled with the C-D arrangement and the hybrid riblet with C-D arrangement contributed to higher skin friction coefficient reduction, ۳۴.۵%, than the sawtooth riblet shape, ۲۶.۷۵%. Moreover, the C-D arrangement was compared to the parallel arrangement and shown that the C-D arrangement increased the lift coefficient (cl) of the airfoil, the flow separation was delayed and the overall performance of the airfoil was enhanced.

Authors

S. Hijazi

School of Engineering, Emirates Aviation University, Dubai, United Arab Emirates

E. Tolouei

School of Engineering, Emirates Aviation University, Dubai, United Arab Emirates

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Al-Kayiem, H. H., D. C. Lim and J. C. Kurnia ...
  • Aupoix, B., G. Pailhas and R. Houdeville (۲۰۱۲). Towards a ...
  • Bechert, D. W., M. Bruse, W. V. Hage, J. T. ...
  • Bechert, D. W. and W. Hage (۲۰۰۶). Drag reduction with ...
  • Benschop, H. O. G. and W. P. Breugem (۲۰۱۷). Drag ...
  • Bhushan, B. (۲۰۰۹). Biomimetics: lessons from nature– an overview. Philosophical ...
  • Bhushan, B. (۲۰۱۶). Biomimetics: Bioinspired Hierarchical-Structured Surfaces for Green Science ...
  • Bixler, G. D. and B. Bhushan (۲۰۱۳). Fluid drag reduction ...
  • Boomsma, A. and F. Sotiropoulos (۲۰۱۶). Direct numerical simulation of ...
  • Caram, J. M. and A. Ahmed (۱۹۹۱). Effect of riblets ...
  • Catalano, P., D. de Rosa, B. Mele, R. Tognaccini and ...
  • Chen, H., F. Rao, X. Shang, D. Zhang and I. ...
  • Chen, H., F. Rao, X. Shang, D. Zhang and I. ...
  • Chu, D. C. and G. E. Karniadakis (۱۹۹۳). A direct ...
  • Dean, B. and B. Bhushan (۲۰۱۰). Shark-skin surfaces for fluid-drag ...
  • Duan, L. and M. M. Choudhari (۲۰۱۴). Direct numerical simulations ...
  • Fu, Y. F., C. Q. Yuan and X. Q. Bai ...
  • Husen, N. M., J. W. Naughton and G. A. Dale ...
  • Ibrahim, M. D., S. N. A. Amran, Y. S. Yunos, ...
  • Jimenez, J. (۱۹۹۴). On the structure and control of near ...
  • Koeltzsch, K., A. Dinkelacker and R. Grundmann (۲۰۰۲). Flow over ...
  • Koepplin, V., F. Herbst and J. R. Seume (۲۰۱۷). Correlation-based ...
  • Leitl, P. A., E. Göttlich, A. Flanschger, A. Peters, C. ...
  • Leitl, P. A., V. Stenzel, A. Flanschger, H. Kordy, C. ...
  • Li, W. (۲۰۲۰). Turbulence statistics of flow over a drag-reducing ...
  • Liu, Q., S. Zhong and L. Li (۲۰۱۷). Reduction of ...
  • Martin, S. and B. Bhushan (۲۰۱۶a). Fluid flow analysis of ...
  • Martin, S. and B. Bhushan (۲۰۱۶b). Modeling and optimization of ...
  • Mele, B. and R. Tognaccini (۲۰۱۲). Numerical simulation of riblets ...
  • Mele, B., L. Russo and R. Tognaccini (۲۰۲۰b). Drag bookkeeping ...
  • Mele, B., R. Tognaccini, P. Catalano and D. de Rosa ...
  • Park, J. and H. Choi (۲۰۱۷). Direct numerical simulation of ...
  • Sundaram, S., P. R. Viswanath and N. Subaschandar (۱۹۹۹). Viscous ...
  • Sundaram, S., P. R. Viswanath and S. Rudrakumar (۱۹۹۶). Viscous ...
  • Walsh, M. J. (۱۹۸۳). Riblets as a viscous drag reduction ...
  • Wikipedia, The Free Encyclopedia ۲۰۲۰. Available online: http://en.wikipedia.org (accessed on ...
  • Xu, F., S. Zhong and S. Zhang (۲۰۱۸). Vortical structures ...
  • Yu, H. Y., H. C. Zhang, Y. Y. Guo, H. ...
  • Zhang, Z., M. Zhang, C. Cai and K. Kang (۲۰۲۰). ...
  • Zhou, H., X. Li and C. Yu (۲۰۲۰). Study on ...
  • Zhou, J., P. Ou and W. Wei (۲۰۱۸). Modeling of ...
  • نمایش کامل مراجع