A New Adaptive Approach for Efficient Energy Consumption in Edge Computing

Publish Year: 1402
نوع سند: مقاله ژورنالی
زبان: English
View: 223

This Paper With 12 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JADM-11-1_012

تاریخ نمایه سازی: 20 فروردین 1402

Abstract:

Edge computing is an evolving approach for the growing computing and networking demands from end devices and smart things. Edge computing lets the computation to be offloaded from the cloud data centers to the network edge for lower latency, security, and privacy preservation. Although energy efficiency in cloud data centers has been widely studied, energy efficiency in edge computing has been left uninvestigated. In this paper, a new adaptive and decentralized approach is proposed for more energy efficiency in edge environments. In the proposed approach, edge servers collaborate with each other to achieve an efficient plan. The proposed approach is adaptive, and consider workload status in local, neighboring and global areas. The results of the conducted experiments show that the proposed approach can improve energy efficiency at network edges. e.g. by task completion rate of ۱۰۰%, the proposed approach decreases energy consumption of edge servers from ۱۰۵۳ Kwh to ۹۰۲ Kwh.

Authors

H. Morshedlou

Department of Computer Engineering and Information Technology, Shahrood University of Technology, Shahrood, Iran.

A.R. Tajari

Department of Computer Engineering and Information Technology, Shahrood University of Technology, Shahrood, Iran.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • M. Avgerinou, P. Bertoldi, and K. Castellazzi, "Trends in data ...
  • R. Ghaderi, M. Esnaashari, and M. R. Meybodi, "A Cellular ...
  • M. Esnaashari and M. R. Meybodi. "Deployment of a mobile ...
  • M. K. Manshad, M. R. Meybodi, and A. Salajegheh. "A ...
  • M.D. Khomami, A. R. Rezvanian, and M. R. Meybodi. "A ...
  • M. Jahanshahi, M. Dehghan, and M. R. Meybodi. "On channel ...
  • X. Zichuan, W. Liang, W. Xu, M. Jia, and S. ...
  • F. Qiang and N. Ansari. "Cost aware cloudlet placement for ...
  • A.H. Safari-Bavil, S. Jabbehdari and M. Ghobaei-Arani, "An Efficient Approach ...
  • W. Yi and Y. Xia. "Energy optimal VM placement in ...
  • M. Sharma and R. Garg, “An artificial neural network based ...
  • L. Yuanzhe and S. Wang. "An energy-aware edge server placement ...
  • M. Demirci, "A survey of machine learning applications for energy ...
  • L. Gu, J. Cai, D. Zeng, Y. Zhang, H. Jin, ...
  • S. Nastic, T. Rausch, O. Scekic, S. Dustdar, M. Gusev, ...
  • C. Jiang, Y. Qiu, H. Gao, T. Fan, K. Li, ...
  • C. Jiang, D. Ou,Y. Wang, Y. Li, J. Zhang, J. ...
  • J. Gao, "Machine learning applications for data center optimization," ۲۰۱۴ ...
  • H. Momeni and N. Mabhoot, "An Energy-aware Real-time Task Scheduling ...
  • M. Dabbagh, B. Hamdaoui, M. Guizani, and A. Rayes, “Energy ...
  • I. AlQerm and B. Shihada, "Enhanced machine learning scheme for ...
  • S. Jiang, S. R. Priya, N. Elango, J. Clay, and ...
  • R. Vafashoar, H. Morshedlou, A. Rezvanian, and M.R. Meybodi, Cellular ...
  • A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, ...
  • J. Yue-Hei, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals, R. Monga, ...
  • H. Cao, M. Wachowicz, and S. Cha, "Developing an edge ...
  • M. Satyanarayanan, P. Simoens, Y. Xiao, P. Pillai, Z. Chen, ...
  • O. Skarlat, M. Nardelli, S. Schulte, and S. Dustdar, "Towards ...
  • M. I. Naas, P. R. Parvedy, J. Boukhobza, and L. ...
  • C. Wu, D. Brooks, K. Chen, D. Chen, S. Choudhury, ...
  • T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, ...
  • N. Rotem, J. Fix, S. Abdulrasool, S. Deng, J. H. ...
  • Google, "XLA is a compiler that optimizes TensorFlow computations." [Online]. ...
  • NNPACK, "Acceleration package for neural networks on multi-core cpus." [Online]. ...
  • M. Dukhan, Y. Wu, and H. Lu, "QNNPACK: open source ...
  • N. Balasubramanian, A. Balasubramanian, and A. Venkataramani, “Energy consumption in ...
  • A. Sharma, V. Navda, R. Ramjee, V. N. Padmanabhan, and ...
  • Z. Tang, S. Guo, P. Li, T. Miyazaki, H. Jin, ...
  • A. Kumar, S. Goyal, and M. Varma, "Resource-efficient machine learning ...
  • X. Zhang, A. Ramachandran, C. Zhuge, D. He, W. Zuo, ...
  • G. Anastasi, M. Conti, M.D. Francesco, A. Passarella, "Energy conservation ...
  • M. A. Razzaque, C. Bleakley, and S. Dobson, "Compression in ...
  • H. Li, K. Ota, and M. Dong, "Learning IoT in ...
  • N.D. Lane, P. Georgiev, L. Qendro, "Deepear: Robust Smartphone Audio ...
  • H. Harb, A. Makhoul, and C. A. Jaoude, "En-route data ...
  • J. Azar, A. Makhoul, R. Darazi, J. Demerjian, and R. ...
  • J. Azar, R. Darazi, C. Habib, A. Makhoul, and J. ...
  • J. Azar, A. Makhoul, M. Barhamgi, and R. Couturier, "An ...
  • Y. Wang, X. Dai, J. M. Wang and B. Bensaou, ...
  • Q. Zeng, Y. Du, KK. Leung, and K. Huang, "Energy-efficient ...
  • Y. Liu, C. He, X. Li, C. Zhang and C. ...
  • C. He, Y. Zhou, G. Qian, X. Li, and D. ...
  • K. Thangaramya, K. Kulothungan, R. Logambigai, M. Selvi, S. Ganapathy, ...
  • نمایش کامل مراجع