تشخیص و کاهش خرابی ساکت داده براساس پیش بینی نرخ رخداد خرابی بدون تزریق اشکال
Publish Year: 1401
Type: Journal paper
Language: Persian
View: 198
This Paper With 13 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
Export:
Document National Code:
JR_IMPCS-3-4_001
Index date: 10 April 2023
تشخیص و کاهش خرابی ساکت داده براساس پیش بینی نرخ رخداد خرابی بدون تزریق اشکال abstract
خرابی ساکت داده (SDC) به طور جدی قابلیت اطمینان یک سیستم را به مخاطره می اندازد. رویکردهای فعلی با استفاده از یادگیری ماشین نرخ رخداد SDC برای هر دستورالعمل را پیش بینی می کنند. در حالی که اکثر آنها فاقد دقت مناسب و نیازمند مجموعه داده برای آموزش هستند و به دلیل مصرف منابع زیاد دستیابی به آنها دشوار است. از سوی دیگر نرخ رخداد اشکالات چندبیتی در قطعات نیمه هادی افزایش چشمگیری داشتهاند. لذا تشخیص دستورات آسیب پذیر در حضور اشکال اهمیت یافته است. اما خلاء تحقیقات موجود عدم وجود یک روش نرم افزاری با دقت بالا بدون نیاز به تزریق اشکال است؛ به طوریکه تشخیص اشکال در SDC با منشاء داده و دستورالعمل مورد بررسی قرار بگیرد. بدین منظور، در این پژوهش با محاسبه نرخ رخداد SDC برای هر دستورالعمل ها، مدل درخت تصمیم گیری M۵rule پیشنهاد گردیده است. سپس از روش تشخیص خطا، با کپی کردن دستورالعملهای حیاتی بوسیله مرتبسازی استفاده شده و در نهایت مدل ارائه شده بر روی معیار Mibench با برنامه های آزمایشی متعدد ارزیابی گردیده است. نتایج ارزیابی نشان می دهد روش ارائه شده در مقایسه با سایر روش های پیشرفته به دقت تشخیص بهتری با سربار در حدود ۹۹ درصد برای ۵۸ درصد نرخ پوشش SDC رسیده است.
تشخیص و کاهش خرابی ساکت داده براساس پیش بینی نرخ رخداد خرابی بدون تزریق اشکال Keywords:
تشخیص و کاهش خرابی ساکت داده براساس پیش بینی نرخ رخداد خرابی بدون تزریق اشکال authors
مونا یخچی
دانشجوی دکتری، گروه کامپیوتر، واحد بروجرد، دانشگاه آزاد اسلامی، بروجرد، ایران.
مهدی فاضلی
دانشیار، گروه کامپیوتر ، دانشکده فناوری اطلاعات، دانشگاه هالمستاد، هالمستاد، سوند.
سید امیر اصغری توچائی
استادیار، گروه کامپیوتر، دانشکده مهندسی برق و کامپیوتر، دانشگاه صنعتی خوارزمی، تهران، ایران.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :