Effect of concentration boundary layer on anodic compartment performance of microbial fuel cells in continuous flow
Publish place: Second National Conference on Hydrogen and Fuel Cells
Publish Year: 1391
Type: Conference paper
Language: English
View: 1,808
This Paper With 7 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
H2FC02_019
Index date: 17 September 2012
Effect of concentration boundary layer on anodic compartment performance of microbial fuel cells in continuous flow abstract
Microbial fuel cells (MFCs) are processes used for simultaneous bioenergy capturing and wastes treating. In this study, a model based upon conduction mechanism for electron transfer is proposed which is mainly intended to investigate the effect of concentration boundary layer in the vicinity of biofilm on MFC performance. The investigation is accomplished by considering a biofilm specific mass transfer coefficient correlation which links the layer mass transfer resistance to hydrodynamic conditions. The model integrates substrate mass balances, current production, conduction and microbial distribution and growth in continuous flow mode. The simulation results reveal the significance of the external mass transfer resistance associated with concentration boundary layer. The hydrodynamic and geometric conditions have direct influence on MFC performance and its dynamic behaviour. Keywords Microbial fuel
Effect of concentration boundary layer on anodic compartment performance of microbial fuel cells in continuous flow Keywords:
Microbial fuel cells , Modeling and simulation , Concentration boundary layer , Continuous flow , External mass transfer resistance
Effect of concentration boundary layer on anodic compartment performance of microbial fuel cells in continuous flow authors
Mohsen Nasr Esfahany
Associate Professor, Chemical Eng. Faculty, Isfahan University of Technology
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :