سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

U-Net: Convolutional Network for Segmentation with DIC-C۲DH-HeLa Dataset

Publish Year: 1401
Type: Journal paper
Language: Persian
View: 180
این Paper فقط به صورت چکیده توسط دبیرخانه ارسال شده است و فایل کامل قابل دریافت نیست. برای یافتن Papers دارای فایل کامل، از بخش [جستجوی مقالات فارسی] اقدام فرمایید.

نسخه کامل این Paper ارائه نشده است و در دسترس نمی باشد

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

Export:

Link to this Paper:

Document National Code:

JR_KDIP-2-4_002

Index date: 15 April 2023

U-Net: Convolutional Network for Segmentation with DIC-C۲DH-HeLa Dataset abstract

Image segmentation is a basic issue in machine vision. One of the important tasks of machine vision and image processing is to recognize the pattern and one of the most important algorithms is U-Net segmentation. The U-Net algorithm has been identified as a popular algorithm in recent years due to its accurate response, high accuracy, high processing speed and learning, no need for large data sets for learning and no need for complex and expensive hardware. Image components and their fragmentation have become part of medical image processing. In this paper, we explain the U-Net algorithm and its convolutional network, as well as the most appropriate setting for the parameters and super parameters of this algorithm to optimize and achieve maximum accuracy in solving image-processing problems with this algorithm. In other words, a proposed method for segmenting medical images is performed on the DIC-C۲DH-HeLa data set, which based on an architecture, the so-called "fully convolutional network", we have modified and expanded this architecture in such a way that with educational images Work very little and provide more segments that are detailed. The results showed that the proposed method has a higher accuracy than the other proposed method.Keywords: U-Net Algorithm, deep learning, medical image processing, segmentation

U-Net: Convolutional Network for Segmentation with DIC-C۲DH-HeLa Dataset Keywords:

U-Net: Convolutional Network for Segmentation with DIC-C۲DH-HeLa Dataset authors

اورانوس کاظمی

گروه مهندسی کامپیوتر دانشگاه اراک

محمدحسین شکور

دانشکده مهندسی، دانشگاه اراک