سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Numerical solution of nonlinear Sine-Gordon equation using modified cubic B-spline-based differential quadrature method

Publish Year: 1402
Type: Journal paper
Language: English
View: 169

This Paper With 18 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_CMDE-11-2_013

Index date: 17 April 2023

Numerical solution of nonlinear Sine-Gordon equation using modified cubic B-spline-based differential quadrature method abstract

In this article, we discuss the numerical solution of the nonlinear Sine-Gordon equation in one and two dimensions and its coupled form. A differential quadrature technique based on a modified set of cubic B-splines has been used. The chosen modification possesses the optimal accuracy order four in the spatial domain. The spatial derivatives are approximated by the differential quadrature technique, where the weight coefficients are calculated using this set of modified cubic B-splines. This approximation will lead to the discretization of the problem in the spatial domain that gives a system of first-order ordinary differential equations. This system is then solved using the SSP-RK54 scheme to progress the solution to the next time level. The convergence of this numerical scheme solely depends on the differential quadrature and is found to give a stable solution. The order of convergence is calculated and is observed to be four. The entire computation is performed up to a large time level with an efficient speed. It is found that the computed solution is in good agreement with the exact one and the error comparison with similar works in the literature indicates the scheme outperforms.

Numerical solution of nonlinear Sine-Gordon equation using modified cubic B-spline-based differential quadrature method Keywords:

Numerical solution of nonlinear Sine-Gordon equation using modified cubic B-spline-based differential quadrature method authors

Athira Babu

Department of Mathematics, Cochin University of Science and Technology, Kerala, India.

Noufal Asharaf

Department of Mathematics, Cochin University of Science and Technology, Kerala, India.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
J. Argyris, M. Haase, and J. C. Heinrich, Finite element ...
G. Arora, B. K. Singh, Numerical solution of Burgers’ equation ...
A. Babu, B. Han, and N. Asharaf, Numerical solution of ...
A. Barone, F. Esposito, C. Magee, and A. Scott, Theory ...
A. G. Bratsos, A fourth order numerical scheme for the ...
E. Bour, Th´eorie de la d´eformation des surfaces, Gauthier-Villars, ۱۸۹۱ ...
R. J. Cheng and K. M. Liew, Analyzing two-dimensional sine–Gordon ...
O. Davydov and R. Schaback, Minimal numerical differentiation formulas, Numerische ...
M. Dehghan and A. Shokri, A numerical method for one-dimensional ...
M. Dehghan and A. Shokri, A numerical method for solution ...
M. Dehghan and D. Mirzaei, The boundary integral equation approach ...
M. Dehghan, M. Abbaszadeh, and A. Mohebbi, An implicit RBF ...
K. Djidjeli, W. G. Price, and E. H. Twizell, Numerical ...
M. J. Huntul, N. Dhiman, and M. Tamsir, Reconstructing an ...
M. Ilati and M. Dehghan, The use of radial basis ...
Z. W. Jiang and R. H. Wang, Numerical solution of ...
R. Jiwari, S. Pandit, and R. C. Mittal, Numerical simulation ...
R. Jiwari and J. Yuan, A computational modeling of two ...
R. Jiwari, Lagrange interpolation and modified cubic b-spline differential quadrature ...
D. Kaya, A numerical solution of the sine-gordon equation using ...
X. Li, S. Zhang, Y. Wang, and H. Chen, Analysis ...
D. Li, H. Lai, and C. Lin, Mesoscopic simulation of ...
M. Li-Min and W. Zong-Min, A numerical method for one-dimensional ...
M. Lotfi and A. Alipanah, Legendre spectral element method for ...
R. Mittal and R. Jain, Numerical solutions of nonlinear burgers’ ...
R. C. Mittal and R. K. Jain, Numerical solutions of ...
R. Mittal and R. Bhatia, Numerical solution of nonlinear sine-gordon ...
A. H. Msmali, M. Tamsir, and A. A. H. Ahmadini, ...
B. Pekmen and M. Tezer-Sezgin. Differential quadrature solution of nonlinear ...
J. Perring and T. H. R. Skyrme, A model unified ...
S. S. Ray, A numerical solution of the coupled sine-gordon ...
W. Shao and X. Wu, The numerical solution of the ...
Y. Shen and Y. O. El-Dib, A periodic solution of ...
Q. Sheng, A. Q. M. Khaliq, and D. A. Voss, ...
C. Shu, Differential Quadrature and Its Application in Engineering, Springer ...
H. S. Shukla, M. Tamsir, V. K. Srivastava, and J. ...
H. S. Shukla, M. Tamsir, and V. K. Srivastava, Numerical ...
H. S. Shukla, M. Tamsir, V. K. Srivastava, and M. ...
H. S. Shukla and M. Tamsir, Numerical solution of nonlinear ...
A. Taleei and M. Dehghan, A pseudo-spectral method that uses ...
M. Uddin, S. Haq, and G. Qasim, A meshfree approach ...
G. B. Whitham, Linear and nonlinear waves, John Wiley & ...
F. Yin, T. Tian, J. Song, and M. Zhu, Spectral ...
نمایش کامل مراجع