A New Method for Protein Conformation Prediction Using Robotics Methods
Publish place: 2nd International Congress on Nanoscience and Nanotechnology
Publish Year: 1387
Type: Conference paper
Language: English
View: 1,517
متن کامل این Paper منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل Paper (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دانلود نمایند.
- Certificate
- I'm the author of the paper
Export:
Document National Code:
ICNN02_136
Index date: 17 September 2012
A New Method for Protein Conformation Prediction Using Robotics Methods abstract
Proteins are the most abundant organic components of human body and in many ways the most important. They naturally perform their essential functions by conformation between two major positions called native and denatured configurations [1]. The computationally efficient prediction of this conformation is one of the most challenging scientific problems of the present century. To fully understand the biological performance of proteins, ability of precise prediction of their native configuration is of quite importance which can be followed by protein design and its applications in Bio-Nanorobotics, Drug design, etc [2].The goal of this research is modeling and simulation of proteins native configuration from an arbitrary position using current methods in robotics which might be computationally more efficient than the alternative methods such as molecular dynamics.In this way first of all a direct kinematics algorithm is needed and the method used here is the Zero Reference Position Notation (ZRPN) developed by Gupta [3]. Forces, torques and the global energy of the molecules are calculated using Amber force field [4]. And finally a common robotic method is used to model the bonds as revolute joints and computing their equivalent torques which will perform the conformation.
A New Method for Protein Conformation Prediction Using Robotics Methods authors
M.H Korayem
Department of Mechanical Engineering, Iran University of Science and Technology. Elm o sanat
Ashkan Daryani
Department of Mechanical Engineering, Iran University of Science and Technology. Elm o sanat
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :