Mobile Host Intrusion Detection in Surveillance Wireless Sensor Networks with Fusion of Sensor Data

Publish Year: 1402
نوع سند: مقاله ژورنالی
زبان: English
View: 89

This Paper With 11 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JITM-15-6_007

تاریخ نمایه سازی: 29 فروردین 1402

Abstract:

In intrusion detection applications, wireless sensor networks are commonly used. Many research literature papers are aimed at generating and evaluating the information on intruder detection in terms of probability of detection and false alarm rates. In two modalities, the model for acoustic signal and the sensor probability model, and in this research paper, the problems of passive motive intrusion detections have been solved. The aim is to establish a three-stage hierarchy to determine if mobile intruders are present. The sensor nodes at the fundamental level have a k-mean clustering grouping. For binary hypothesis testing, the strengths or probabilities in the cluster head are employed. Cluster leaders send their judgments to the Fusion Centre (FC) after completing a Likelihood Ratio Test (LRT) to ensure invaders are correctly inferred. A numerical analysis of the signals received determines the optimal value for probability computation. The resulting fusion rule maximizes detection likelihood regarding the allowed falsifying rates. The number of absolute sensor nodes determines the exact fusion rule. Compared to earlier fusion rules, simulation results show that the new fusion rule has a better ability to follow mobile invaders and enhanced accuracy and detection speed.

Authors

Josephin Jinisha

Department of Computer Application, Noorul Islam Centre for Higher Education, Tamilnadu, India.

Jerine

Department of Software Engineering, Noorul Islam Centre for Higher Education, Tamilnadu, India

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Abrardo, A., Martalo, M., & Ferrari, G. (۲۰۱۷). Information fusion ...
  • Ciuonzo, D., Rossi, P. S., & Willett, P. (۲۰۱۷). Generalized ...
  • Jusoh, S., & Almajali, S. (۲۰۲۰). A systematic review on ...
  • Katenka, N., Levina, E., & Michailidis, G. (۲۰۰۷). Local vote ...
  • Li, D., & Hu, Y. H. (۲۰۰۳). Energy-based collaborative source ...
  • Li, Y., Jha, D. K., Ray, A., & Wettergren, T. ...
  • Lou, L., Zhang, J., Xiong, Y., & Jin, Y. (۲۰۱۹). ...
  • Nardelli, P. H. J., Ramezanipour, I., Alves, H., de Lima, ...
  • Niculescu, D., & Nath, B. (۲۰۰۱, November). Ad hoc positioning ...
  • Niu, R., Varshney, P. K., & Cheng, Q. (۲۰۰۶). Distributed ...
  • Onur, E., Ersoy, C., Deliç, H., & Akarun, L. (۲۰۰۷). ...
  • Varshney, P. K. (۲۰۱۲). Distributed detection and data fusion. Springer ...
  • Xiong, J., Li, F., & Liu, J. (۲۰۱۵). Fusion of ...
  • Yazici, A., Koyuncu, M., Sert, S. A., & Yilmaz, T. ...
  • Zhu, M., Ding, S., Wu, Q., Brooks, R. R., Rao, ...
  • نمایش کامل مراجع