بررسی مقایسه ای پیاده سازی قابل ترکیب بندی مجدد شبکه های یادگیری عمیقدرکاربردهای خودروهای خودران
Publish place: The 18th International Conference on Information Technology, Computers and Telecommunications
Publish Year: 1401
نوع سند: مقاله کنفرانسی
زبان: Persian
View: 224
This Paper With 19 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ITCT18_028
تاریخ نمایه سازی: 29 فروردین 1402
Abstract:
امروزه با پیشرفت تکنولوژی، حوزه خودروهای خودران تحولات جدید به خود دیده است، بخصوص با توسعه سیستم هاییادگیری عمیق امکانات ویژه ای برای خودروها فراهم شده است. این پیشرفتها در حوزه های مختلف اعم از تشخیص عابر وسایر وسایل نقلیه، تشخیص تابلوهای راهنمایی و رانندگی، تشخیص جاده و مسیر قابل رانندگی و سایر حوزه های ادارک صحنهو مسیریابی توسعه یافته اند. با این وجود هنوز چالش هایی در این حوزه بخصوص برای خودروهای خودران وجود دارد. یکی ازمهمترین چالش ها حجم محاسباتی زیاد شبکه های یادگیری عمیق است که نیاز به واحدهای محاسباتی و حافظه زیادی دارد.این امر بخصوص در سیستم های نهفته و با ظرفیت محدود مانند انواع FPGA ها به یک مشکل عمده تبدیل می شود. بنابراینتلاشهای زیادی در این حوزه برای پیاده سازی شبکه یادگیری عمیق مانند کانولوشن ها بر روی تجهیزات با منابع محدود ازطریق یک موازنه بین کاهش دقت با کاهش منابع سخت افزاری و مصرف انرژی انجام شده است. در این مقاله یک نمای کلیاز روش های پیاده سازی شبکه های یادگیری کانولوشنی بر روی پردازنده های با منابع محدود مخصوصا FPGA در کاربردهایخودروهای خودران ارائه شده است.
Keywords:
Authors
محمد چشفر
دانشگاه تربیت دبیر شهید رجایی
پرویز امیری
دانشگاه تربیت دبیر شهید رجایی
حسین قرایی گرکانی
پژوهشگاه ارتباطات و فناوری اطلاعات