شبکه های عصبی پیچشی حساس به هزینه برای طبقه بندی زیرگروه های سرطان
Publish Year: 1401
Type: Journal paper
Language: Persian
View: 223
This Paper With 7 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
Export:
Document National Code:
JR_IJDCS-5-1_003
Index date: 23 April 2023
شبکه های عصبی پیچشی حساس به هزینه برای طبقه بندی زیرگروه های سرطان abstract
طبقه بندی زیرگروه های سرطان وظیفه بسیار مهمی برای تشخیص و پیش آگهی سرطان است. در سال های اخیر، روش های یادگیری عمیق به همین دلیل محبوبیت قابل توجهی به دست آورده اند. بااین حال، تعیین ساختار شبکه عصبی دشوار است زیرا عملکرد شبکه عمیق تا حد زیادی به ساختار آن بستگی دارد. علاوه بر این، تعداد بالای ژن ها در پایگاه داده بیان ژن و عدم تعادل داده ها بین طبقات مختلف تاثیر مستقیمی بر پیچیدگی و عملکرد مدل های طبقه بندی زیرگروه سرطان دارد. برای پرداختن به مشکل داده های نامتعادل، یک مدل شبکه عصبی کانولوشن (CNN) با استفاده از یک استراتژی حساس به هزینه برای افزایش دقت مدل در شناسایی کلاس های اقلیت پیشنهادشده است. از سوی دیگر، از تکنیک ضریب فیشر برای کاهش ژن ها در مرحله پیش پردازش استفاده می شود. در روش حساس به هزینه، ماتریس هزینه بر اساس توزیع کلاس ها ایجاد می شود و سپس از این ماتریس در مرحله تابع هزینه شبکه CNN برای محاسبه میزان خطا استفاده می شود. دو مجموعه از مجموعه داده های سرطان برای ارزیابی روش پیشنهادی استفاده می شود. نتایج با استفاده از سه معیار دقت، فراخوانی و دقت مقایسه می شوند. نتایج نشان می دهد که انتخاب ژن های مناسب برای طبقه بندی به همراه استفاده از یادگیری حساس به هزینه برای این منظور می تواند عملکرد روش پیشنهادی نسبت به مدل CNN بدون انتخاب ویژگی و یادگیری حساس به هزینه حدود ۱۱%، ۱۰% و ۱۸% به ترتیب برای دقت، فراخوانی و صحت افزایش دهد.
شبکه های عصبی پیچشی حساس به هزینه برای طبقه بندی زیرگروه های سرطان Keywords:
شبکه های عصبی پیچشی حساس به هزینه برای طبقه بندی زیرگروه های سرطان authors
راضیه هاشمی عالم
دانشکده برق و کامپیوتر، صنعتی قم، قم، ایران.
محبوبه شمسی
دانشکده برق و کامپیوتر، صنعتی قم، قم، ایران.
مجید آقایی
دانشکده برق و کامپیوتر، صنعتی قم، قم، ایران.