A New Constitutive Model for Prediction of Saturated Sand Behavior Using Artificial Neural Network
Publish place: 9th International Congress on Civil Engineering
Publish Year: 1391
Type: Conference paper
Language: English
View: 1,962
This Paper With 8 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
Export:
Document National Code:
ICCE09_329
Index date: 28 September 2012
A New Constitutive Model for Prediction of Saturated Sand Behavior Using Artificial Neural Network abstract
The soil constitutive relation is one of the important issues in soil mechanics[1]. In the current geotechnical approach, the relationship between stresses and strains is represented by a series of mathem atical equations to describe the soil behavior based on a set of fundamental parameters The main problem with this parametric approximation is the high mathematical complexity involved especially when nonlinear effects have to be included andalso when different types of soils are considered.In this paper by using test data from triaxial shear test of saturated sand, including void ratio, axial strain,deviatoric stress, confining pressure and mean effective stress, an Artificial Neural Network(ANN) is trained and tested. Finally, the results of the networks are employed to simulate the behavior of saturated sand and to compare the stress path curves obtained from test data with those of ANN results.
A New Constitutive Model for Prediction of Saturated Sand Behavior Using Artificial Neural Network Keywords:
A New Constitutive Model for Prediction of Saturated Sand Behavior Using Artificial Neural Network authors
Seyyed Mohammad Rashid Hosseini
MSc Student of Earthquake Eng
Hossein Rahnema
Assistant Professor, Department of Civil and Environmental Engineering, Shiraz University
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :